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Preface

Polymer gels are defined as a three-dimensional polymer network swollen with a
solvent. If properly designed, polymer gel can hold 1000 times as much solvent as
polymer weight, have deformability more than 10 times, and can retain/release
macromolecular substances like protein. Such high swellability, deformability,
and permeability of polymer gel are unique characteristics not found in other
materials. Due to these characteristics, hydrogels are used for many applications
such as absorbent materials for paper diapers, soft contact lenses, drug reservoir,
etc. Recently, considerable attention has been paid as a material for future medical
care such as tissue-replacement material and scaffold for regenerative medicine.
This book explains the correlation between the physical properties and structure
of polymer gels and is prepared for university students learning polymer gels for
the first time.

Unique properties of polymer gels stem from their unique structure; though
the significant component is solvent, a polymer gel is solid due to the 3D polymer
network with a few percent by weight. Notably, the polymer network and the sol-
vent are not separated in two phases, but they exist together as a gel phase. Thus,
a polymer gel has both a solid-like nature stemming from a three-dimensional
network and a polymer solution-like nature arising from a solvent dissolved and
retained in a polymer network. This duality is the feature of polymer gels not
found in other materials and the source of the uniqueness. At the same time,
however, this duality often causes difficulty in understanding polymer gels. The
solid nature of polymer gel is discussed based on the theory of rubber elasticity,
while the liquid-like nature is presented based on the theory of polymer solu-
tions. Therefore, to understand the basic concept of polymer gel, fundamental
understanding of both is indispensable, and the harmony of both is essential.

Both rubber elasticity and polymer solution theory are based on statistical
mechanics. Under ideal assumptions, both theories bring rigorous prediction by
mathematical formulas for various physical property values. On the other hand,
the 3D polymer network is inherently heterogeneous; this is obvious from the
fact that even synthetic linear polymer chains have heterogeneous distribution
in length. It is impossible to synthesize a polymer network with uniform mesh
size and number of branching. Since it is not possible to accurately define the
structure, it is difficult to formulate the distribution function and to adapt the
statistical mechanics approach practically.
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For this reason, it is difficult to understand the correlation between the
structure and physical properties of a real polymer gel, and the contribution of
theory to material design may be limited. However, we believe that understand-
ing the fundamentals of polymer gels is still relevant, because the hurdle for
practical application of polymer gels is high, and it is difficult to go beyond the
difficulty relying only on experience. Material design based on fundamentals is
indispensable to overcome this situation. Understanding the phenomenon in
the form of a mathematical expression is extremely meaningful, even though we
cannot observe quantitative agreement between the theory and the experimental
result. Useful information is often obtained by comparing experimental results
with theoretical values obtained under certain exact assumptions. It is also
essential to change the degree of coarse-graining and watch over the rough
sketch of physical properties using scaling theory. In this way, it is crucial to
handle the heterogeneity of polymer gels. On the other hand, it is vital to deepen
the fundamental understanding of polymer gels by experimentally verifying the
theories using polymer gels with a well-defined structure.

Therefore, in this book, as an introduction of basic knowledge, we first explain
the statistical mechanics and scaling of a polymer chain in Chapter 1 and that of
polymer solution in Chapter 2. In Chapter 3, we introduce the structure of poly-
mer gels and explain the rubber elasticity, which predicts the solid-like nature
of polymer gels. In Chapter 4, we describe the swelling/deswelling, which can be
understood by combining the rubber elasticity (solid-like nature) and the osmotic
pressure of a polymer solution (liquid-like nature). We introduce the large defor-
mation and fracture in Chapter 5 and the diffusion of substances in polymer gels
in Chapter 6, which are essential for practical applications.

The last half of this book contains our experimental results using Tetra-PEG
gels, which is a near-ideal polymer gel developed by us. We briefly explain
Tetra-PEG gels in Chapter 7 and experimental results in Chapters 8–17. We
examined the validity of the most of the theories presented in the first half using
Tetra-PEG gels. This book was designed to be an introduction to understand
polymer gels. By comparing the first half and the last half, readers can learn how
to examine the models and how to utilize the models to experiments. I hope this
book will help you know polymer gels.

Takamasa SakaiTokyo
December 2019
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1

Single Polymer Chain
Takamasa Sakai

Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

1.1 General Features

A polymer gel is a three-dimensional network of polymer chains containing a
large amount of solvent (Figure 1.1). When a network structure is formed only by
chemical bonding, all the polymer chains are included in a single molecule; one
large macromolecule traps a large number of solvent molecules. Let us calculate
the molecular weight of a polymer gel. For example, 100 g of a gel with a poly-
mer concentration of 5% contains 5 g of polymer networks. In other words, one
molecule has a weight of 5 g. Because the molecular weight is given by the sum of
Avogadro’s number of weights of individual molecules, the molecular weight of
the polymer gel is 3× 1024 g/mol, which is extremely large. When one stretches a
piece of polymer gel, all the chains forming this extremely large macromolecule
are stretched, which is why the mechanical properties of polymer gels are pre-
dicted based on the simple sum of the contributions of single polymers connected
to neighboring chains via crosslinks. Thus, learning the characteristics of a single
polymer chain is important for understanding polymer gels. This chapter intro-
duces some methodologies for extracting the universal characteristics of a single
polymer chain.

1.1.1 Conformation of a Polymer Chain

A polymer chain is a linear molecule containing a large number of atoms. Prior
to considering the shape of a polymer chain, let us focus on the local structure of
a polymer composed of four carbons (Figure 1.2). When a carbon–carbon single
bond is present between the monomers, the distance between each monomer
is approximately 1.5 Å. Additionally, if carbons are connected by a single bond,
the bond angle 𝜃 is essentially constant at 109.5∘. Even if the bond length and
bonding angle are constant, rotation around the bond axis, represented by 𝜓 , is
allowed, resulting in conformational flexibility. In fact, the value of 𝜓 takes the
trans (𝜓 = 0∘) or gauche (𝜓 =±120∘) stable angles due to steric hindrance.

Let us increase the number of carbons to 100 and consider the shape of the
resulting polymer chain. For example, if all the bonds take trans conformations,

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.
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C
C

C

Figure 1.1 Schematic diagram of polymer gels. The polymer network consists of polymer
chains connected to neighboring chains via crosslinks.

θ

ψ

ψ–120
(a) (b)

120

U

Figure 1.2 Conformation of local structures containing four carbon atoms (a) and the energy
landscape (b).

the polymer chain takes an elongated form with an end-to-end distance of
approximately 25 nm. Conversely, if all bonds are in gauche conformations, the
polymer chain takes a helical structure, and the end-to-end distance becomes
very short. Although these structures can be realized by some specific macro-
molecules or under specific conditions, conventional polymers contain both
trans and gauche forms and have highly complicated structures. However, by
applying coarse-graining concepts, sufficiently long polymer chains can be
approximated to a model chain regardless of the details of the monomer unit.

1.1.2 Coarse-Graining of a Polymer Chain

Here, we introduce “coarse-graining,” which is an important concept in dis-
cussing polymers. Coarse-graining is one methodology for extracting the
universal characteristics of a phenomenon. Roughly speaking, coarse-graining
methods intentionally shift focus away from the trivial matters for the
characteristics of interest, simplify the problem, and provide the universal
characteristics. Let us see an example of coarse-graining for polymer chains.
The first coarse-graining is “setting the bond length as constant and the bond
angle as freely rotational.” This assumption represents a considerable “jump”
from the discussion earlier. In principle, the bonding angle should be constant
at approximately 109.5∘, and the local conformation should be trans or gauche.
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Figure 1.3 Coarse-graining of monomeric units in a polymer chain.

However, one simple idea justifies this coarse-graining. The idea is to combine
some monomers together and to make a “segment.” Figure 1.3 shows a schematic
of making a segment from three monomers; as a result, a polymer chain can be
visualized as a sequence of segments. As shown in Figure 1.3, the bonds between
neighboring segments can take various angles relative to the bonds between
monomers, and the individual properties of each monomer can be masked.
Masking the individual properties of each monomer is of great importance
in polymer physics, because only under such conditions can we extract the
universal properties of the polymer chain. The length of the smallest segment
that has freely rotating bonds is called the segment length, which is intrinsic
to each monomer unit. Conversely, by taking the appropriate segment with
the segment length, the end-to-end distance of a polymer chain is determined
by considering a series of segments connected by freely rotating bonds. For
simplicity, this book considers polymer chains as consisting of monomers that
act as segments with freely rotating bonds, following the method of de Gennes
[1]. In other words, the monomer length is the same as the segment length, and
the degree of polymerization is the same as the number of segments.

1.1.3 Free Rotation Model

Chains consisting of segments with free rotation can be addressed using the free
rotation chain model. Assuming that a polymer chain consists of N vectors (ai)
of size a, the end-to-end distance (r) of the chain is written as follows:

r = a1 + a2 + · · · + aN (1.1)

Since it may be difficult to start with a three-dimensional problem, let us first
consider the problem in one dimension. The one-dimensional version of this
problem is actually given by the familiar problem as follows:

A point proceeds +a or −a with equal probabilities in one step. How far is the
point from the origin after N steps?
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This problem is equivalent to tossing coins in high school mathematics.
In this case, the displacement, r, can be calculated as an expected value
as follows:

r = a
(
−N

(
N
0

)(1
2

)N
− (N − 2)

(
N
1

)(1
2

)N−1 (1
2

)
+ · · · + (N − 2)

(
N
1

)(1
2

)(1
2

)N−1
+ N

(
N
0

)(1
2

)N)
= a

[
N
{
−
(

N
0

)(1
2

)N
+
(

N
0

)(1
2

)N}
+ (N − 2)

{
−
(

N
1

)(1
2

)N−1 (1
2

)
+
(

N
1

)(1
2

)(1
2

)N−1}
+ · · ·

]
= 0

(1.2)

The result of r = 0 is not essential. This answer is obvious from the expression of
Eq. (1.2); the situations in which a point reaches −r and r have equal probabilities
and cancel each other. In both cases, the end-to-end distance should be consid-
ered, r. The absolute value of the displacement must be considered to correctly
evaluate the size. In general, the absolute value of the displacement is obtained
by the square root of the root mean square of r (⟨r2⟩1/2). Let us return to the
three-dimensional problem from here. For a general three-dimensional vector r,⟨r2⟩ is calculated as follows:

⟨r2⟩ = r ⋅ r = (a1 + a2 + · · · + aN )(a1 + a2 + · · · + aN )

=
N∑

i=1
ai

2 +
N∑

i=1

N∑
k≠i

aiak = Na2 (1.3)

Here, aiak = 0 (if i≠ k) since each jump vector is uncorrelated (⟨cos 𝜃⟩ = 0
because the average value of bond angle is 90∘). Given that the polymer chains
are isotropic, the polymer chains are considered spheres of diameter aN1/2.
In a one-dimensional problem, some people may feel uncomfortable that
vectors can overlap each other. Although the overlap is highly reduced in the
three-dimensional space, overlap between the monomer units is permitted
under this model. This polymer chain is called an ideal chain [2–4]. This concept
is analogous to an ideal gas having no volume. Of course, the overlapping of
monomers is not allowed in real polymers; this model is incorrect except in
special cases. Despite this assumption being unrealistic, it is the foundation
for many theoretical models because the end-to-end distance of an ideal
chain follows the Gaussian distribution. The Gaussian distribution is a simple
and useful statistical model and thus provides physical quantities in simple
forms with less difficulty than other methods. Section 1.2 shows that the
Gaussian distribution successfully describes the end-to-end distance of an
ideal chain.
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1.2 Statistics of a Single Polymer Chain

1.2.1 End-to-End Distance of a 1D Random Walk

In Section 1.1.3, the average end-to-end distance of an ideal chain was deter-
mined based on the distribution of end-to-end distances. This section considers
the probability that an ideal chain has a specific distance of x. Again, let us start
with a one-dimensional problem. Assuming that the number of steps the point
proceeded in the + direction is N+ and that in the − direction is N− in the previ-
ously mentioned one-dimensional problem, the following equations are obtained:

N = N+ + N− (1.4)

x = N+ − N− (1.5)

For simplicity, we can assume that the length of a step is unity and estimate
the number of situations (W (N , x)) in the case that the point reaches x after N
steps. Because sets of N+ and N− for arriving at x are uniquely determined from
Eqs. (1.4) and (1.5), W (N , x) is estimated as the number of arrangements of N+
pieces of “+” and N− pieces of “−” (Figure 1.4):

W (N , x) =
(

N
N+

)
= N!

(N − N+)!N+!
= N!(

N+x
2

)
!
(

N−x
2

)
!

(1.6)

On the other hand, the total number of possible paths in N steps is 2N , which
is calculated as the total number of situations that can occur when selecting one
of the two choices N times. Thus, the probability of reaching x after N steps is
expressed as follows:

W (N , x)
2N = N!

2N
(

N + x
2

)
!
(

N− x
2

)
!

(1.7)

Calculating the exact value for all N is a very painful task; however, if we make
a proper approximation at a sufficiently large limit of N , this equation leads to a

Figure 1.4 Number of situations that
reach x in N steps (N = 10, x =+2).

+ + + + + +

+

+

+

+

+ + + + + –

– – – –

– – –

– –

–

+ + + + +

+ + + + +

+ + + + +

++ + + + +

– –

– – –

– – –

––––

–

N = 10, x = +2 → N+ = 6, N– = 4

10!
(10–6)!6!

= 210
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Gaussian distribution. Let us calculate this value following the method of Rubin-
stein and Colby [4]. First, the natural logarithm is taken of both sides of the
equation:

ln
(

W (N , x)
2N

)
= ln N! − N ln 2 − ln

(N + x
2

)
! − ln

(N − x
2

)
! (1.8)

The last two terms are reduced to the following:

ln
(N + x

2

)
!=ln

[(N
2
+ x

2

)(N
2

+ x
2
− 1

)
· · ·

(N
2

+ 2
)(N

2
+ 1

)
⋅
(N

2

)
!
]

= ln
(N

2

)
! +

x∕2∑
s=1

ln
(N

2
+ s

)
(1.9)

ln
(N − x

2

)
! = ln

(N
2

)
! −

x∕2∑
s=1

ln
(N

2
+ 1 − s

)
(1.10)

By substituting Eqs. (1.9) and (1.10) into Eq. (1.8), one obtains the following:

ln
(

W (N , x)
2N

)
= ln N! − N ln 2 − 2 ln

(N
2

)
! −

x∕2∑
s=1

ln
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2
+ s

)
+
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2
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)

= ln N! − N ln 2 − 2 ln
(N

2

)
! −
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2
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)
(

N
2
+ 1 − s

) (1.11)

The fourth term in Eq. (1.11) can be rewritten as the following:

ln

(
N
2
+ s

)
(

N
2
+ 1 − s

) = ln

(
1 + 2s

N

)
(

1 + 2−2s
N

) = ln
(

1 + 2s
N

)
− ln

(
1 + 2 − 2s

N

)
(1.12)

Here, we apply an important approximation of the relationship between s and N .
The maximum value of s is N/2, and the number of situations corresponding to
this case is only 1. In most cases, s stays close to the origin (see one-dimensional
walks), making it sufficiently smaller than N . Here, by ignoring the case of large
s, which is unlikely, and only considering the case where s ≪ N , the expression
can be further transformed using a Taylor expansion (ln(1+ y)≈ y).

ln
(

1 + 2s
N

)
− ln

(
1 + 2 − 2s

N

)
≅ 2s

N
− 2 − 2s

N
= 4s

N
− 2

N
(1.13)
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Using Eq. (1.13), Eq. (1.11) can be transformed to the following:

ln
(

W (N , x)
2N

)
= ln N! − N ln 2 − 2 ln

(N
2

)
! −

x∕2∑
s=1

(4s
N

− 2
N

)
= ln N! − N ln 2 − 2 ln

(N
2

)
! − 4

N

x∕2∑
s=1

s + 2
N

x∕2∑
s=1

1

= ln N! − N ln 2 − 2 ln
(N

2

)
! − 4

N

(
x
2

)(
x
2
+ 1

)
2

+ 2
N

x
2

= ln N! − N ln 2 − 2 ln
(N

2

)
! − x2

2N
(1.14)

Equation (1.14) can be reduced using the following Starling approximation:

N! ≅
√

2𝜋N
(N

e

)N
for N ≫ 1 (1.15)

ln
(

W (N , x)
2N

)
= ln N! − N ln 2 − 2 ln

(N
2

)
! − x2

2N

= ln
(√

2𝜋N
(N

e

)N)
− N ln 2 − 2 ln

(√
𝜋N

(N
2e

)N∕2)
− x2

2N

= ln
√

2𝜋N + N ln N
e
− N ln 2 − ln𝜋N − N ln N

2e
− x2

2N

= ln

(√
2
𝜋N

)
− x2

2N
(1.16)

As a result, the probability is given by the following:

W (N , x)
2N =

√
2
𝜋N

exp
(
− x2

2N

)
(1.17)

If we consider x to be a continuous value and this function to be a continuous
function, Eq. (1.17) corresponds to a probability density distribution function.
To investigate the function, let us integrate it from −∞ to ∞:

∫
∞

−∞

W (N , x)
2N dx =

√
2
𝜋N ∫

∞

−∞
exp

(
− x2

2N

)
dx =

√
2
𝜋N

⋅
√

2𝜋N = 2

(1.18)

Since this calculation corresponds to calculating “the sum of probabilities,” it is
natural that the value of the integral is 1. The doubled integral value comes from
the procedure of converting discrete x to continuous x. As shown in Table 1.1,
in the lattice space, when N is an even number, the probability that x becomes
odd is 0. On the other hand, if N is an odd number, the probability that x will
be even is 0. Therefore, for any case, as x is changed to 1, 2, 3, …, the probability
alternates between a finite value and 0 (Table 1.1). The integral value of 2 comes
from simply changing the discontinuous function to a continuous function.
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Table 1.1 Number of situations reaching x in N steps.

x −4 −3 −2 −1 0 1 2 3 4

W (N, x) N = 3 0 1 0 3 0 3 0 1 0
N = 4 1 0 4 0 6 0 4 0 1

5×10–2

4

3

2

1

0

P
1D

 (
–)

–40 –20 0 20 40
x (–)

Figure 1.5 Probability density
distribution function of the
one-dimensional Gaussian distribution
(P1D with a = 1, N = 100).

By standardizing Eq. (1.17) by 2, the probability density function of a one-
dimensional random walk (P1D(N , x)) is obtained.

P1D(N , x) =
1√

2𝜋N
exp

(
− x2

2N

)
(1.19)

This equation is the same as the Gaussian distribution with an average (⟨x⟩)
of 0 and a variance (⟨x2⟩) of N (Figure 1.5). The general Gaussian distribution is
expressed as follows:

f (x) = 1√
2𝜋⟨x2⟩ exp

(
−
(x − ⟨x⟩)2

2⟨x2⟩
)

(1.20)

At the end of the one-dimensional problem, let Eq. (1.20) be expanded to an arbi-
trary step length. When the step length is a, ⟨x⟩ = 0 and ⟨x2⟩ = a2N , resulting in
the following:

P1D(N , x) =
1√

2𝜋a2N
exp

(
− x2

2a2N

)
(1.21)

1.2.2 End-to-End Distance of a 3D Random Walk

Let us expand the 1D discussion to three dimensions. In 3D space, the probability
that one end is at the origin and the other at r = (rx, ry, rz) is expressed as follows:

P3D(N , r)drx dry drz = P1D(N , rx)drx ⋅ P1D(N , ry)dry ⋅ P1D(N , rz)drz (1.22)



1.2 Statistics of a Single Polymer Chain 11

By obtaining the root mean square of r from Eq. (1.3) and assuming the spatial
isotropy, the following equation is obtained:⟨r2⟩ = ⟨rx

2⟩ + ⟨ry
2⟩ + ⟨rz

2⟩ = Na2

⟨rx
2⟩ = ⟨ry

2⟩ = ⟨rz
2⟩ = Na2

3
(1.23)

Here, we focus on the x-axis component. From Eqs. (1.21) and (1.23), the follow-
ing equation is obtained:

P1D(N , rx) =
1√

2𝜋⟨rx
2⟩ exp

(
−

rx
2

2⟨rx
2⟩
)

=
√

3
2𝜋Na2 exp

(
−

3rx
2

2Na2

)
(1.24)

The y- and z-axis components are estimated in similar ways and substituted
into Eq. (1.22).

P3D(N , r) = P1D(N , rx) ⋅ P1D(N , ry) ⋅ P1D(N , rz)

=
(

3
2𝜋Na2

)3∕2

exp

(
−

3(rx
2 + ry

2 + rz
2)

2Na2

)

=
(

3
2𝜋Na2

)3∕2

exp
(
− 3r2

2Na2

)
(1.25)

Compared with Eq. (1.21), the probability density functions in one dimension
and three dimensions are almost the same. However, the probability distribu-
tion that the distance between both ends becomes |r| differs greatly between one
dimension and three dimensions. In one dimension, the probability distribution
(r≠ 0) is written as follows since the distance between the ends being |r| only
occurs in two cases: the cases of −r and +r.

Pr1D(N , |r|) = 2
√

1
2𝜋Na2 exp

(
− r2

2Na2

)
=
√

2
𝜋Na2 exp

(
− r2

2Na2

)
(1.26)

Because there is only one situation for r= 0, the probability distribution is given
by

Pr1D(N , |r|) = √
1

2𝜋Na2 exp
(
− r2

2Na2

)
(1.27)

In the case of three dimensions, we need to consider a multiplicity factor of
4𝜋r2 because the end-to-end distance of |r| occurs everywhere on the spherical
shell with radius |r|. Thus, the probability distribution can be written as follows:

Pr3D(N , |r|) = 4𝜋r2
( 3

2𝜋Na2

)3∕2
exp

(
− 3r2

2Na2

)
(1.28)

Figure 1.6 shows the probability distributions of one-dimensional and three-
dimensional end-to-end distances. Their shapes are completely different from
each other; in one dimension, there is a local maximum in the vicinity of r = 0,
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〈r2〉1/2/aN1/2 (–)

 1D
 3D

Figure 1.6 Probability distribution of
end-to-end distances of one-dimensional
and three-dimensional random walks.

whereas in three dimensions, there is a local maximum in the vicinity of aN1/2.
Notably, the probability that the random coil returns to the vicinity of the origin
is almost 0 in three dimensions. This difference is obviously due to the multiplica-
tion factor of 4𝜋r2, as there was no significant difference in the probability density
distribution itself in one dimension and three dimensions. In three-dimensional
space, only rx = ry = rz = 0 satisfies |r| = 0, whereas there are many combinations
of rx, ry, rz that satisfies rx

2 + ry
2 + rz

2 = |r|2, when |r|≠ 0. This difference in multi-
plicity causes the major difference in the one-dimensional and three-dimensional
probability distributions.

1.2.3 Force Needed to Stretch an Ideal Chain

We then consider the force required to stretch an ideal chain. Under constant
temperature and pressure, the total free energy of an ideal chain is written using
enthalpy (U) and entropy (S).

F = U − TS (1.29)

The change in total free energy when the end-to-end distance is extended to r
is written as follows:

ΔF = ΔU − TΔS = {U(N , r) − U(N , 0)} − T{S(N , r) − S(N , 0)} (1.30)

Here, it should be noted that the reference state is r = 0, which is discussed in
detail later. Based on the definition, entropy is expressed as the following:

S = k lnΩ (1.31)

whereΩ is the number of possible conformations of the ideal chain with a number
of monomers equal to N and an end-to-end vector of r. In contrast, by definition,
Ω can be written as follows:

P3D(N , r) =
Ω(N , r)

∫ Ω(N , r)dr
(1.32)

From Eqs. (1.31) and (1.32), one obtains the following:

S = k ln
(

P3D(N , r) ⋅ ∫ Ω(N , r)dr
)

(1.33)
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In contrast, there is no enthalpy change (ΔU) during stretching because the
large deformation can be achieved by rotation around the bond axis without
changing the bond lengths or bond angles. (Indeed, there is a weak energy term
derived from the interactions between polymer segments, but it does not exist
under the assumptions of an ideal chain.) Therefore, the energy change during
the deformation mainly stems from the entropy change. This so-called entropic
elasticity is completely different from the energy elasticity, which stems from the
enthalpy changes of metals and ceramics. Taken together, the energy change from
the deformation is given by the following:

−ΔF
T

= S(N , r) − S(N , 0) = k ln
(

P3D(N , r)∫ Ω(N , r)dr
)

− k ln
(

P3D(N , 0)∫ Ω(N , r)dr
)

= k ln
P3D(N , r)
P3D(N , 0)

+k
{

ln∫ Ω(N , r)dr − ln∫ Ω(N , r)dr
}

= k ln
P3D(N , r)
P3D(N , 0)

(1.34)

Notably, ∫ Ω(N , r)dr is the total number of possible conformations and corre-
sponds to 2N in the one-dimensional problem described earlier, and this value
does not depend on r. Substituting Eq. (1.25) into Eq. (1.34), we obtain Eq. (1.35):

−ΔF
T

= k ln
P3D(N , r)
P3D(N , 0)

= k ln

(
3

2𝜋Na2

)3∕2
exp

(
− 3r2

2Na2

)
(

3
2𝜋Na2

)3∕2 = − 3kr2

2Na2 (1.35)

Finally, applying R0 = aN1/2, the following equation is obtained:

ΔF = 3kTr2

2Na2 = 3kT
2

(
r

R0

)2

(1.36)

Next, let us calculate the force, f , required to stretch the chain. f is obtained by
differentiating the free energy change (ΔF) with displacement (r):

f = 𝜕ΔF
𝜕r

= −T 𝜕S
𝜕r

= 3kT
R0

2 r (1.37)

The force is proportional to the strain, so the elasticity of the polymer follows
Hooke’s law. An ideal chain is a spring with a spring constant of 3kT/R0

2. This
spring softens as the polymer becomes longer or the temperature decreases.
Notably, the primary component of the spring constant is kT , which is the
energy of simple thermal motion. Figure 1.7 is a schematic picture showing a
physical representation of this phenomenon. Many children (monomers) are
holding hands with each other, and each is moving freely (thermal motion). Let
us consider increasing the distance between the flags being held by the children
at each end by little bit. When the distance between the ends is short, it may
be possible to easily separate the flags to a certain extent, but as the flags are
pulled apart more and more, the resistance will increase. Imagining that if the
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Figure 1.7 Schematic picture of a thermally fluctuating polymer chain.

movement of the children gets faster intuitively suggests that the necessary force
becomes greater. Essentially, the same phenomenon occurs when stretching a
polymer chain. The elastic energy of the polymer originates from the thermal
fluctuations of the monomer units.

Importantly, this spring has a finite length and can be extended to a maxi-
mum of aN . As mentioned earlier, the applicability of the Gaussian distribution
is limited for small deformations (Eq. (1.13)). When stretched beyond a certain
point, the force diverges to values greater than what are predicted. The maxi-
mum stretchability is roughly predicted by the Kuhn model from the initial length
(aN1/2) and maximum length (aN) [5]. This equation expects that longer poly-
mers will be more stretchable.

𝜆max =
aN
R0

= aN
aN1∕2 = N1∕2 (1.38)

Here, let us return to Eq. (1.30) again and think about why the reference
condition is r = 0. At first glance, this appears contradictory to Eq. (1.28)
and Figure 1.6. The end-to-end distance with the highest probability in three
dimensions is approximately aN1/2, and from the principle of entropy elasticity,
the reference state is likely to be approximately r = aN1/2. The reference state
of r = 0 seems to correspond to the one-dimensional results rather than the
results in three dimensions. Indeed, this is the essence of the problem. Once
the two ends of the polymer are fixed and stretched, the end-to-end vector
r is deformed only in the initial vector direction, and the axial direction will
not change. Therefore, the multiplicity of 4𝜋r2 is lost, reducing the problem
to one dimension, which is why the reference state of r = 0. From this result,
the following strange behavior is expected. When one encounters a polymer in
three-dimensional space, the most stable end-to-end distance is aN1/2. Once
one pinches both ends of the chain, the chain automatically shrinks to 0 because
the most stable state is r = 0.

Here, we introduce an example in which this phenomenon causes problems.
Consider simulating a polymer network using the statistical results of the ideal
chain. In three-dimensional space, ideal polymers have an average end-to-end
distance of aN1/2. We distribute ideal chains so that an average distance between
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them is roughly aN1/2 and crosslink them. This situation is similar to the situation
in which prepolymers with functional groups at both ends are crosslinked by
crosslinking agents. We then apply Eq. (1.36), which is the potential for single
polymer strands, to each polymer chain. At that moment, the polymer chain auto-
matically shrinks, and the polymer network collapses. In this way, if one simply
applies the results based on an ideal chain, one will obtain a practically unrealistic
outcome. Similar problems occur when predicting the mechanical properties of
polymer networks from the mechanical properties of a single polymer chain.

Since the analytical methods shown in this section can be handled as mathe-
matical equations, it is possible to discuss even coefficients. However, difficult
mathematical formulas that are not intuitive must be solved. Additionally,
although it is possible to obtain exact solutions under certain limited conditions,
solving these equations will not readily provide a rough grasp of more universal
behavior. For example, analytically determining the relationship between force
and displacement for real polymer chains is practically impossible. On the
other hand, the idea of scaling enables us to consider the behavior of polymers
in the form of a power law. The scaling theory was first applied to polymer
physics by Pierre-Gilles de Gennes. The scaling theory is highly suitable for
“coarse-graining” the polymeric system. Using scaling theory, the universal
properties of polymers have been predicted and experimentally demonstrated.
In this book, analytical description, scaling description, or both are shown to be
necessary. In Section 1.3, we introduce the scaling rules for an ideal chain as an
introduction of scaling theory.

1.3 Scaling of a Single Polymer Chain

Roughly speaking, the scaling rule is a power law relationship expressing how
the parameter of interest changes when other parameters are changed. As an
example, let us consider the relationship between the radius (r) and the volume
(V ) of a sphere:

V = 4
3
𝜋r3 (1.39)

What is the essence of this formula? Of course, although it is important for young
people to remember the exact equation, it is rare for adults to estimate the exact
volume of a ball. There is little possibility of encountering the following problem:

If the radius of a sphere is doubled, by what factor does the volume increase?
When solving this problem, it is not convenient to calculate the volume of the

two spheres and then calculate the ratio. Instead, we only use the fact that the
volume is the cube of the radius, and 23 = 8. This example gives us a conceptual
understanding of the power law relationship, and scaling theory focuses only on
the power law relationship. The scaling law between the radius and the volume
of the sphere is written as follows:

V ∼ r3 (1.40)
The coefficient is eliminated, and the formula is dramatically simplified. As a
result, this equation expresses the relationship between the volume of the 3D
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W ~ x W ~ x2 W ~ x3 W ~ x2

Figure 1.8 Relationship between the weight (W) and length (x) of D-dimensional objects.

object and the representative length. In this way, fine information is lost, and the
relationship is generalized. This universality of the scaling fits polymer physics,
and it describes the universal rules of polymer chains independent of polymeric
species. Indeed, many scaling laws of polymers have been predicted and experi-
mentally validated. Because this book only introduces important scaling laws for
understanding polymer gels, I recommend reading the original textbook of de
Gennes if you want to learn more. You can find at least two scaling rules earlier
in this book. One is scaling for ⟨r2⟩ of an ideal chain, which is given by Eq. (1.3)
as follows:

⟨r2⟩ ∼ N (1.41)

From this scaling rule, we can see the characteristics of the ideal chain. In gen-
eral, an isotropic D-dimensional object has the following relationship between
the characteristic length, x, and the weight, w (Figure 1.8):

w ∼ xD (1.42)

For example, in one dimension, the weight is proportional to the length, and
in three dimensions, the weight is proportional to the cube of the length. How
does this apply to the ideal chain? Given that the degree of polymerization is
proportional to the weight of a polymer chain (w∼N), the following equation is
obtained:

w ∼ N ∼ ⟨r2⟩ ∼ x2 (1.43)

The scaling rule reveals that the weight of an ideal chain is proportional to the
square of the length. Thus, an ideal chain has a two-dimensional structure despite
being an isotropic three-dimensional object. Objects having fractal structures
have such extended dimensions, so-called the fractal dimension. Therefore, an
ideal chain has a two-dimensional fractal structure.
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1.3.1 Stretching of an Ideal Chain

Another important scaling rule that has already been addressed is the relationship
between displacement and force in stretching of an ideal chain (f ∼ r). In this
section, scaling theory is applied to determine the force required to stretch an
ideal chain. According to de Gennes, this scaling relationship is obtained from
the following two conditions:

1. The length (R) after stretching depends only on tension (f ), temperature (T),
and the initial length (R0).

2. Since tension (f ) is constant at any point along the chain, R must be a linear
function of N .

Condition 1 is used for the dimension analysis, which is based on the idea that
when the unit systems of the left and right sides are compatible, the equality of
the sides is physically correct. This analysis is useful for investigating the rela-
tionship between correlating parameters. Many physics teachers will tell you that
formula can easily be predicted based on the units of the parameters. An example
of dimension analysis is predicting that the formula for speed divides the dis-
tance by the time based on the units of speed (m/s). For dimension analysis, let
us summarize the units of each physical quantity shown in Condition 1.

R (m), f (N), T(K), R0(m)

Since R and R0 have the same unit system, they seem to be easy to handle, and
f and T will require more consideration. For T , the units can be converted to
that of energy (J = N m) in the form of kT with Boltzmann’s constant (k). For
f , multiplying with R forms the work (N m), which involves applying a force of f
and stretching the chain by R. Notably, the initial length is 0 since it becomes a
one-dimensional problem at the moment both ends are grasped. Based on these
considerations, we obtain the following expression by setting the ratio of the
length on the left side and the ratio of the energy on the right side:

R
R0

∼
fR
kT

(1.44)

Since this scaling rule is dimensionless on both sides, the dimensions of both
sides are of course consistent. However, this equation does not show all possible
relationships. Because both sides are dimensionless, even if one multiplies the
right side, one can obtain a dimensionally correct expression. Expression (1.44)
is a special case (x = 1) of the expression shown as follows:

R
R0

∼
(

fR
kT

)x

(1.45)

Since an expression including this arbitrary exponent is obtained from Condition
1, the value of x in the equation derived from Condition 1 is estimated by Condi-
tion 2. Let us look at Condition 2 before determining the final scaling rule. What
Condition 2 says is extremely simple. That is, “when a chain is divided in half,
the force applied to both ends of each half is still f , so the elongation of each half
is one-half of that of the whole chain. Therefore, the chain elongation should be
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proportional to the degree of polymerization (R∼N).” By applying this condition
to Eq. (1.45), x can be determined. Since f and kT do not depend on R or N , they
are excluded from the equation, leaving only the relevant physical quantities (R
and N).

R
R0

∼ Rx (1.46)

Rearranging the formula and applying R0 ∼N1/2, we obtain the following:

R ∼ R0
1

1−x ∼ N
1

2(1−x) (1.47)

According to Condition 2 (R∼ N), x = 1/2. By substituting x = 1/2 into Eq.
(1.45), the following equation is obtained:

f ∼ kT
R0

2 R ∼ kT
a2N

R (1.48)

Although the calculation itself is simple, Eq. (1.48) is almost the same as Eq. (1.37).
Let us turn our attention to the following problem. Considering only the unit sys-
tem, it should be possible to set fR0 instead of fR as the impulse in Eq. (1.45). Can
we still obtain the same conclusion? In fact, the same expression can be obtained.
In this way, if one can imagine, one can predict the correct scaling rule without
having to solve difficult mathematical problems. This simplicity is an advantage
of scaling theory, and at the same time, it can be said that the difficulty in visu-
alizing the problem is the bottleneck. Scaling theory is particularly powerful for
complex problems and is compatible with polymer gels with complex structures.
Becoming comfortable with scaling theory by learning the various scaling laws in
this book will be of great help.

1.3.2 Real Chains

An ideal chain could be modeled as a simple random walk such that the
overlapping of monomers is allowed. However, the overlapping of monomers
is of course not allowed in reality. A model chain with an excluded volume is
called a real chain. Notably, a real chain is a chain modeled by simply adding
the excluded volume effect to an ideal chain, but it is still different from chains
that actually exist. Real chains are described in a model called a self-avoiding
random walk (SAW) [6]. In a SAW, passing through a previously occupied
trajectory is inhibited. Although only one condition, in which overlapping is not
permitted, is added, the analysis of a SAW is substantially more difficult. For
example, the one-dimensional problem cannot be simply extended as it can in
ideal chains because the nature of the SAW changes substantially depending on
the dimensions of the lattice. For example, in one dimension, there are only two
straight paths forward, the plus and minus directions. Intuitively, the number
of cases increases qualitatively in 2D and 3D. Even in the two-dimensional and
three-dimensional SAWs, it is rare for both chain ends to be close to each other
because of the excluded volume effect.

Correlations between close events are relatively easier to consider in the con-
text of processes that are described probabilistically, such as SAW, but to consider
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correlations between distant events is extremely difficult. For example, the condi-
tion “go forward, but do not to step on the occupied lattice point one step ahead”
can be relatively easily formulated, while it is extremely difficult to formulate the
condition “do not step on any lattice point that is currently occupied.” Despite
the difficulty, the statistical properties of SAW have been revealed using various
mathematical methodologies. For example, the root-mean end-to-end distance
(⟨r2⟩ = RF

2) in three-dimensional space can be expressed as follows:

RF = aN3∕5 (1.49)

For the derivation, solving difficult mathematical problems or using simulations
is necessary. It may seem that compared with R0 = aN1/2 for an ideal chain, this
equation is not very different. However, for example, when a = 3 Å and N = 100,
R0 = 30 Å and RF = 48 Å, the difference is a factor of approximately 1.5, which
suggests that the effect of overlapping inhibition is reasonably large.

1.3.3 Stretching of a Real Chain

Finally, let us consider the force needed to stretch a real chain. Similar to an ideal
chain, the following physical quantities are likely related to this phenomenon:

R (m), f (N),T (K),RF (m)

The difference between the real chain and the ideal chain is only in the refer-
ence, which changed from R0 to RF. A similar expression is predicted for an ideal
chain:

R
RF

∼
(

fR
kT

)x

(1.50)

Here, unlike in the case of an ideal chain, we assume the chain shows spring-like
behavior and resulting Hooke’s law (f ∼R). Focusing only on the relationship
between f and R, we obtain

R1−x ∼ f x (1.51)

To satisfy Hooke’s law, it is necessary for x to equal 1/2. By substituting x = 1/2
into Eq. (1.50), the following equation is obtained:

f ∼ kT
RF

2 R ∼ kT
a2N6∕5 R (1.52)

Equation (1.52) is almost identical to that of an ideal chain, and the only differ-
ence is due to the difference between R0 and RF. In the case of an ideal chain,
when a small force f is applied, R is proportional to N (indeed, the scaling rule
was derived from this condition). This relationship indicates that the chain was
stretched by tension. On the other hand, in real chains, R is proportional to the
power greater than the unity of N (R∼N6/5). This power suggests that the tension
is not constant in the chain, and the force applied to the chain is transmitted by
the interactions between the units in the real chain as well.

Prior to considering stretching with a large force, we introduce a blob, which
is an important concept in polymer physics. Up to this point, we considered f
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as a product with reference length and as having the same units as energy or
impulse. Pincus, on the other hand, introduced a virtual segment (elastic blob)
with a length of 𝜉 defined as the following [7]:

𝜉 ≈ kT
f

(1.53)

As is obvious from the formula, 𝜉 is the length required to give the same impulse
as the thermal energy (kBT) from the force f . According to the expression, 𝜉
diverges to infinity at the limit of small forces and becomes 0 at the limit of large
forces. 𝜉 is the length at which the impulse given by the external force becomes
comparable to the thermal energy. Based on Eq. (1.53), we can estimate the mea-
sure of the “small force,” which is the condition described by Eq. (1.52). When
the applied force is small, 𝜉 is a chain size (not infinite), and the energy given by
the force is sufficiently small compared with thermal energy; the thermal motion
is not influenced by the applied force. Under this condition, the conformation of
the chain is not greatly affected by the external force, and the initial statistics (the
statistics of a real chain) are preserved. The initial statistics are disturbed from
the point of 𝜉 = RF because the force (=kT/RF) gives impulses comparable to the
thermal energy. When such a force is applied, the conformation of the chain is
disturbed, and the initial statistics can no longer be used. Thus, Eq. (1.52) holds
at a small f as expressed by the following equation:

𝜉 > RF ↔ f < kT
RF

(1.54)

Next, let us consider the case when a large force f is applied (𝜉 ≪ RF). First,
we focus on a monomer unit in the real chain. Does a great change occur in its
correlation with neighboring units? In fact, even when a large force is applied,
short-range correlations between neighboring units are hardly affected, which
is similar to the situation depicted in Figure 1.7; the children in the middle of
the line rarely notice that they are being stretched. Instead, the correlations
between groups of units are influenced by the force. The group here is the elastic
blob. Inside a blob of size 𝜉, thermal energy dominates energy from an external
force, and inside the blob, the initial conformation is preserved. On the other
hand, the correlation between blobs is governed by the applied force. Therefore,
under strong stretching, the blobs line up in the stretching direction (Figure 1.9).
Assuming that the number of monomer units contained inside the blob is gp, 𝜉

ξ > RF ξ ≈ RF

Blob

ξ

ξ ≪ RF

Figure 1.9 Schematic picture of stretching a real chain.
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is written as follows:

𝜉 ≈ agp
3∕5 (1.55)

Given that the number of blobs is N/gp, the end-to-end distance of a chain is
the following:

R ≈ 𝜉 ⋅
N
gp

≈ 𝜉 ⋅ N ⋅
(
𝜉

a

)−5∕3

≈ aN
(

fa
kT

)2∕3

(1.56)

Now, we rearrange this expression to isolate force f :

f ≈ kT
a

( R
aN

)3∕2
(1.57)

This equation predicts that the force will be proportional to R3/2 under a large
deformation. However, this power law was not clearly observed in the stretching
of a polymer chain as measured by atomic force microscopy (AFM). On the other
hand, this scaling rule can be extended to the stretching of gels (Chapter 5), and
that rule shows good agreement with experiments [8–10]. Based on these exper-
imental results, the molecular weight of the polymer chain must be sufficiently
long to observe the power law predicted by Eq. (1.57).

Column 1: Miscible Gels and Immiscible Gels

In this book, we discuss transparent gels, in which the constituent polymer
chains are miscible with the solvent. On the other hand, in turbid gels like
“tofu,” not all constituent polymers are miscible. In this case, some polymers are
phase-separated without solvation, forming an aggregated structure, of which
size reaches the visible light region, resulting in turbidity. Therefore, turbid gels
can be called immiscible gels or sponge-like gels. Immiscible gels are in between
miscible gels and sponges. One of the major differences between miscible and
immiscible gels is the solvent retention ability. In immiscible gels, the osmotic
pressure is relatively small, because the amount of solvated component is
small, leading to poor solvent retention. Therefore, when an immiscible gel is
compressed, the solvent is extracted out of the gel. You may know water is easily
extracted from tofu; on the other hand, it is hardly extracted from a transparent
jelly.

Another difference is that immiscible gels are inherently heterogeneous due
to phase separation. In this book, we started the description of polymer gels
from that of a polymer chain followed by that of polymer solutions. Thus,
this book implicitly treats homogeneous miscible gels. For immiscible gels,
mesoscale-sized modeling may be more suitable than molecular models shown
in this book; it is better to adopt the prediction based on the mesoscale fibrous
structure and the mechanical properties of fibers. Of course, turbid gels like
tofu are not just a sponge, but also have properties in between miscible and
immiscible gels. Therefore, one needs to consider which character will appear
with respect to each physical property.
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Polymer Solution
Takamasa Sakai

Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

2.1 Polymer Chains in Solution

In Chapter 1, an ideal chain and a real chain were introduced as typical polymer
chains. This chapter first addresses what practical conditions will cause a poly-
mer chain to behave as an ideal chain or a real chain. To address this problem, let
us consider how much free space is inside a polymer chain. The polymer volume
fraction inside the polymer chain (𝜙int) indicates the ratio of the volume occu-
pied by monomer units to the volume of the sphere with a diameter equal to the
end-to-end distance of the polymer chain, R (Figure 2.1).

For example, in the case of an ideal chain, since the polymer chain consists of
N monomer units with a volume of a3 and R = aN1/2, 𝜙int is expressed as follows:

𝜙int ≈
a3N

(aN1∕2)3 = N−1∕2 (2.1)

For a real chain, the following equation can be used:

𝜙int ≈
a3N

(aN3∕5)3 = N−4∕5 (2.2)

Therefore, for example, if N = 100, 𝜙int of the ideal chain and the real chain are
0.10 and 0.025, respectively. Based on these calculations, both real chains and
ideal chains have swollen structures, and they become less dense as N increases.
Since the monomer units are surrounded by many solvent molecules, the inter-
actions between monomer units and solvent molecules are clearly an important
factor in determining the conformation of the polymer chain.

2.1.1 Chain Swelling in a Good Solvent

From the discussion on the internal polymer volume fraction, a polymer chain
includes many solvent molecules from the solution. When a good solvent coexists
with a polymer, the polymer swells and takes an extended structure compared
with an ideal chain. Here, we introduce Flory’s approach to the swelling of an
ideal chain [1].

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.
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a

R

ϕint
Figure 2.1 Schematic picture of a polymer chain.

When an ideal chain reaches an energy equivalent to the elastic energy (ΔFel
in Eq. (1.36)), the ideal chain swells. This energy is generated by the coexistence
of a good solvent. In general, the free energy change (ΔF) when a polymer chain
is mixed with solvent molecules is expressed as follows:

ΔF = ΔFel + ΔHmix − TΔSmix (2.3)

This equation shows that the swelling tendency caused by the coexistence of the
solvent and the restoring tendency due to entropy elasticity determine the state of
the system. Let us consider the situation in which the initial end-to-end distance
(R0) changes to 𝛼R0 due to swelling.

R = 𝛼R0 (2.4)

The equilibrium state is the point where the change in total free energy due to
swelling is 0.

𝜕ΔF
𝜕𝛼

=
𝜕ΔFel

𝜕𝛼

+ 𝜕

𝜕𝛼

(ΔHmix − TΔSmix) = 0 (2.5)

Although we do not describe the derivation of this formula in detail, the following
solution can be obtained. The method used here is similar to that of gel swelling
(see Chapter 4):

𝛼
5 − 𝛼3 ∼

(
1 − T

𝛩

)
N1∕2 (2.6)

Here,𝛩 is the temperature at which the influence of the coexistence of the solvent
is negligible (𝜃 temperature). At T = 𝛩, one obtains 𝛼 = 1, indicating that the
chain maintains its initial conformation, a characteristic of an ideal chain. This
state is called the 𝜃 state, and in this state, the repulsive effect of entropy and the
attractive effect from the mixing enthalpy are exactly balanced. In the 𝜃 state, the
monomer units and the solvent molecules are arranged randomly; the probability
that a monomer exists next to another monomer unit and the probability that a
solvent molecule exists next to a monomer unit can be written as the initial 𝜙int
and 1−𝜙int, respectively.

On the other hand, at T < 𝛩, Eq. (2.6) becomes positive, and the chain swells
(𝛼 > 1). Under this condition, it is more favorable for monomer units to interact
with solvent molecules than interact with other monomer units, and the probabil-
ity that a solvent molecule exists next to a monomer unit is greater than the initial
1− 𝜙int, resulting in swelling. To roughly investigate the swelling behavior, let us
consider the limit of a large N . Here, because the value of expression Eq. (2.6) itself
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becomes extremely large, the value of 𝛼 also becomes large. As a result, 𝛼5
≫𝛼

3

holds, and Eq. (2.6) can be reduced to the following:

𝛼
5 ∼

(
1 − T

𝛩

)
N1∕2

𝛼 ∼ N1∕10 (2.7)

Substitution of this result into Eq. (2.4) gives the following:

R ∼ N1∕10R0 ∼ N1∕10N1∕2 ∼ N3∕5 (2.8)

This scaling corresponds to the dependence of R of the real chain on N as shown
by Eq. (1.49). In other words, when T is smaller than𝛩 and N is sufficiently large,
the polymer chain takes the conformation of a real chain. Paradoxically speaking,
no matter how good the quality of the solvent, a real chain does not swell further,
meaning that the upper limit of swelling is the real chain. When conventional
polymers are stably dissolved, their structures are in between an ideal chain and a
real chain. Analogously, in general polymer chains comprising a miscible polymer
gel take an intermediate structure between an ideal chain and a real chain.

2.1.2 Existing Conditions of an Ideal Chain and a Real Chain

Here, we summarize the situations in which the ideal chain and the real chain
exist. An ideal chain was modeled by a simple random walk under the assump-
tion that overlapping between segments is allowed. This assumption means
that there is no correlation between the arrangement of monomer units and
solvent molecules, which corresponds to a situation in which no repulsive forces
or attractive forces exist between monomer–monomer, monomer–solvent,
or segment–solvent. The simplest example with these conditions is a single
polymer melt system because the only component presents in the system is the
polymer, and the polymer is serving as both the solute and the solvent. There-
fore, there is no entropy of mixing (ΔSmix = 0), and the interactions between
monomer–monomer, monomer–solvent, and segment–solvents are equal
(ΔHmix = 0). Notably, taking the case of N = 100 as an example, approximately
10 different ideal chains are within the volume of one average ideal chain in a
molten system. Although this prediction was first proposed by Flory, it was not
immediately accepted. However, this prediction has been verified by small-angle
neutron scattering (SANS) using deuterium-labeled polymers [2].

In addition to the single polymer molten system, Eq. (2.6) indicates that at some
T = 𝛩, the polymer chain takes the conformation of the ideal chain. Generally,
in a binary system, mixing is favorable because entropy increases with mixing; in
other words, there are repulsive forces between molecules of the same species. To
cancel this repulsive force, the enthalpy of mixing should cause certain attractive
forces between molecules of the same species. The state in which these entropy
and enthalpy changes cancel is the 𝜃 state. In the 𝜃 state, monomer units and sol-
vent molecules are arranged in an uncorrelated manner, satisfying the condition
of the ideal chain. To satisfy this condition in reality, solvents (called 𝜃 solvents)
specific to the polymer species must be used, and these solvents can be found in
the literature [3].
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Real chains exist when T < 𝛩 and N ≫ 1; in other words, a long polymer chain
in a good solvent takes the conformation of a real chain. Notably, 𝛼5

≫𝛼
3 is not

satisfied even at N = 100. Although it depends on the type of polymer, it has been
experimentally shown that Eq. (1.49) holds above approximately N = 1000 [4,
5]. A representative example of a good solvent system is an athermal condition.
The athermal condition is when ΔHmix = 0, meaning that the total interaction
enthalpies between the monomer units, between the solvents, and between the
solvent and the monomer unit cancel out. As a result, the monomer units are
repulsed by the contribution from the mixing entropy.

Although the ideal chain and the real chain are representative chain conforma-
tions, they are extreme conformations instead of typical conformations. Indeed,
in reality, polymer chains have intermediate conformations between those of an
ideal chain and a real chain. Generalizing the end-to-end distance R0 using an
index 𝜈 indicating the exclusion volume of a polymer chain is convenient.

R0 ≈ aN𝜈 (2.9)

𝜈 is 1/2 for ideal chains and 3/5 for real chains, and conventional polymer chains
take intermediate values (1/2≤ 𝜈 ≤ 3/5) with some exceptions.

2.2 Effect of Concentration on the Polymer
Conformation

In Section 2.1, we discussed dilute solutions in which polymers do not overlap
with each other. In dilute solutions, because interactions between polymers are
negligible, the picture is simple and easy to understand. However, as the concen-
tration increases, polymers begin to interact with each other. At what concentra-
tion do polymers start interacting with each other? How will the conformations of
the polymers change? In this section, we first focus on the concentration at which
polymers start overlapping (the overlapping concentration, c*, or the overlapping
polymer volume fraction, 𝜙*).

2.2.1 Overlapping Concentration

The overlapping concentration is the concentration at which the polymers fill
the system while maintaining the conformations they had in the dilute solution
(shown in the middle of Figure 2.2). Given that the space is completely filled
without overlapping, the polymer volume fraction inside the polymer envelope
is identical to that of the whole system. Thus, the following scaling equation is
predicted for a polymer with an exclusion volume index 𝜈:

𝜙
∗ = 𝜙int ≈

a3N
(aN𝜈)3 = N1−3𝜈 (2.10)

The exponent on N is −1/2 in the case of an ideal chain and −4/5 for a real chain;
in general, as N increases, the polymer tends to fill the system with a lower poly-
mer concentration. From Eqs. (2.9) and (2.10), the following statements can be
derived:
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• The volume occupied by one polymer with a degree of polymerization N1 is
larger than that occupied by two polymers each with a degree of polymeriza-
tion of N1/2.

• If N is small, it is impossible to fill the system no matter how much the concen-
tration is increased; on the other hand, if N approaches infinity, even a single
polymer can fill the system.

These facts should be confirmed by the reader by using Eq. (2.9) because these
are important for discussing gelation. Notably, in a practical sense, 𝜙* is not a
single concentration but a concentration range. The concentration range shown
in Figure 2.2b is wide, and it can depend on how 𝜙* was estimated.

How will the conformation of the polymers change as the concentration is
increased beyond 𝜙*? Let us start by considering chains in the 𝜃 solvent. In
the dilute state, the chain has an end-to-end distance of aN1/2. In the polymer
melt, which is the maximum concentration, the end-to-end distance is also
aN1/2. Thus, the chain always has an end-to-end distance of aN1/2 regardless
of the concentration because entropy and enthalpy changes due to the mixing
of the polymer and solvent cancel out with each other in any concentration
range; there is no total energy change due to the mixing of the polymer and
solvent. Therefore, as the concentration increases, ideal chains overlap one
another without changing their conformation (mixed model, Figure 2.3b). This
prediction has been verified by a SANS experiment using deuterium-labeled
substances [2].

Turning our attention to real chains, in the dilute state, a real chain has an
end-to-end distance of aN3/5. When we decrease the fraction of the solvent, the
system becomes a polymer melt, which contains only polymer chains. In a poly-
mer melt, the polymer chains take the conformation of ideal chains regardless
of their initial conformation, and the end-to-end distance is aN1/2. Therefore, it
is expected that for concentrations above 𝜙*, the end-to-end distance gradually
shrinks from aN3/5 to aN1/2 as the concentration increases. To understand this
situation, the influence of concentration on the excluded volume effect must be
considered.

ϕ < ϕ*
(a) (b) (c)

ϕ ≈ ϕ* ϕ > ϕ*

Figure 2.2 Overlapping of polymer chains in different concentration ranges: (a) dilute, (b)
semidilute, and (c) concentrated regions.
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(a) (b)

Figure 2.3 Models of polymer solutions: (a) isolated model and (b) combined model.

2.2.2 Semidilute Solution

Let us start with a dilute system in which there is enough space for the polymers
to be isolated. At these concentrations, real chains rarely overlap with each other.
Therefore, in the dilute state, real chains have an end-to-end distance of aN3/5

regardless of the concentration. Next, let us consider the semidilute region above
𝜙*. In this concentration range, nowhere in the system are there isolated poly-
mers. If interpenetration between polymers does not occur even in this state,
the polymers will shrink. This model is called an isolated model (Figure 2.3a).
Considering that the original size is aN3/5 and volume contraction occurs at con-
centrations higher than 𝜙*, the following scaling relationship is established for
the isolated model:

R ≈ aN3∕5
(
𝜙
∗

𝜙

)1∕3

(2.11)

Here, (𝜙*/𝜙)1/3 is the ratio of the uniaxial dimension change when the volume
shrinks inversely proportional to the concentration. Unlike this model, it is pos-
sible to have a conformation close to an ideal chain; at concentrations above 𝜙*,
the excluded volume is no longer dominant, and the real chains overlap with each
other (mixed model shown in Figure 2.3b). Indeed, many experiments on real
chains in solution support the mixed model [6].

How can we draw a picture of the mixed model? First, let us focus on a poly-
mer segment in a polymer solution with a concentration above 𝜙* (Figure 2.4).
This segment obviously has the strongest interactions with its two neighboring
segments because they are covalently bonded and move essentially together. This
type of direct interaction among topological neighbors weakens as the distance
between segments increases. Another type of interaction occurs among spatially
neighboring segments that do not belong to the same polymer or are not topo-
logical neighbors even if they belong to the same polymer. Here, the problem is
whether the segment can determine if the spatial neighbor belongs to the same
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Interchain

Intrachain

Figure 2.4 Neighboring segments in a polymer solution.

polymer but is topologically far away or if it belongs to another polymer. Ulti-
mately, it is impossible to distinguish because of the decay in topological interac-
tions. Therefore, selectively excluding segments contained in other polymers is
impossible, and as a result, adjacent polymers overlap with each other.

2.2.3 Blobs in Semidilute Solution

Let us further consider the case of real chains at semidilute concentrations.
Because interactions between segments in a real chain and solvent molecules
are favored over interactions among segments, penetration with other chains is
disfavored. At concentrations above 𝜙*, polymer chains are forced to penetrate
into each other. Given that this applies a kind of pressure to real chains, this
situation is similar to the problem of stretching a single chain (see Section
1.2.4), and the blob concept can again be used. The excluded volume is still
considered to be dominant on a small scale, although polymers interpenetrate
each other on a large scale due to pressure from the surrounding chains. Similar
to the discussion in Section 1.2.4, the sequence of segments not involved in
interpenetration where the excluded volume dominates can be considered
as a blob (concentration blob). The concentration blob is visualized as the
nonoverlapping sequence of segments in a snapshot of a semidilute solution
(Figure 2.5).

The scaling of the blob size (𝜉) is estimated by the following two required con-
ditions:

1. For 𝜙≈ 𝜙*, the blob is equivalent to an isolated chain (𝜉 ≈ RF), and 𝜉 decreases
as 𝜙 increases.

2. The blob size does not depend on the molecular weight of the polymer.

Condition 1 is reasonable, given that the exclusion volume of a real chain is dom-
inant at 𝜙*. Condition 2 is reasonable because the length of the polymer chain
does not influence the picture shown in Figure 2.5b. The length of the polymer
containing a blob (unless it is very short) does not affect the nature of the blob
or the interaction between neighboring blobs. The scaling of 𝜉 expected from
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(a) (b)

Figure 2.5 Schematic picture of a semidilute solution. A polymer solution (a) is filled with
blobs shown as circles (b).

Condition 1 is as follows:

𝜉 ≈ RF

(
𝜙

𝜙∗

)x

(2.12)

By substituting Eqs. (2.9) and (2.10), we achieve Eq. (2.13):

𝜉 ≈ aN3∕5
(

𝜙

N−4∕5

)x

(2.13)

When we focus on the power law of N , we find the following:

𝜉 ∼ N
3+4x

5 (2.14)

Applying the requirement of Condition 2 (𝜉 ∼ N0), one obtains x =−3/4. As a
result, the scaling of 𝜉 is given as follows:

𝜉 ≈ a𝜙−3∕4 (2.15)

From this equation, concentration blobs are expected to dramatically shrink with
increasing concentration. However, concentration blobs do not become shorter
than a certain length; since the segments of a real chain cannot overlap, the blob
size cannot be smaller than the segment size.

Next, let us consider the end-to-end distance (R) of a real chain at a semidilute
concentration. The dimensions of real chains are influenced by other chains and
contract slightly with increasing polymer concentration. This contraction can be
predicted based on the scaling for the blobs. As shown in Figure 2.5, in a semidi-
lute solution, the blobs are packed in a compact manner. Thus, a real chain in a
semidilute solution is considered as a series of blobs. Given that the number of
segments included in a blob is gp and the exclusion volume effect is still dominant
inside of the blob, 𝜉 is written as follows:

𝜉 ≈ agp
3∕5 (2.16)
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Figure 2.6 Dependence of R on 𝜙 for a
real chain.

aN3/5

R

aN1/2

ϕ* ϕ** ϕ

~ ϕ–1/8

Notably, this expression is the same as that of elastic blobs (Eq. (1.55)). Because
the number of blobs in a chain is given by N/gp and the blobs are randomly
arranged, R is represented as the following:

R ≈ 𝜉

(
N
gp

)1∕2

(2.17)

Here, R is estimated as the size of a random walk with a step length of 𝜉 and
a number of steps of N/gp. By substituting Eqs. (2.16) and (2.17), one obtains
Eq. (2.18):

R ≈ 𝜉N1∕2
(

a
𝜉

)5∕6

≈ aN1∕2
𝜙
−1∕8 (2.18)

The dependence of Eq. (2.18) on𝜙 is much smaller than that of the isolated model
(Eq. (2.5)), suggesting that the effect of surrounding polymers is not significant.
Figure 2.6 illustrates how this end-to-end distance varies with increasing con-
centration. At dilute concentrations, R = aN3/5 gradually shrinks in proportion
to 𝜙−1/8 above 𝜙* and finally reaches that of an ideal chain (R = aN1/2). The con-
centration region where the chain contracts in proportion to 𝜙−1/8 is called the
semidilute region (𝜙*<𝜙<𝜙**), and the region where R= aN1/2 is called the con-
centrated region (𝜙**<𝜙). The reason why the chain does not decrease beyond
the size of the ideal chain is that the blob size cannot be smaller than the segment
size; the segment has a clear excluded volume at any concentration. Thus, in the
concentrated region, a blob is equivalent to a segment. As a result, a real chain
can be represented as a random walk consisting of segments and has the same
conformation as an ideal chain.

This argument can be extended for general polymers with an index 𝜈. By sub-
stituting RF in Eq. (2.11) for aN𝜈 , and assuming the blob size is independent of
N , the following scaling can be obtained:

𝜉 ≈ a𝜙
𝜈

1−3𝜈 (2.19)

R ≈ aN1∕2
𝜙

2𝜈−1
2(1−3𝜈) (2.20)
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2.3 Osmotic Pressure of a Polymer Solution

Since polymers comprising a polymer gel are miscible with the solvent, when the
gel is immersed in the same solvent as that contained in the gel (for example,
when the hydrogel is immersed in water), there is a difference in osmotic pres-
sure between the inside and outside of the gel. Although the polymers in the gel
tend to migrate into the external solution to decrease the difference in concen-
tration, they cannot move because they are immobilized by crosslinks, which is
similar to situations in which a polymer solution and a solvent are separated by
a semipermeable membrane (Figure 2.7). As a result, to reduce the difference
in concentrations, the solvent enters the gel, resulting in swelling. In this man-
ner, gels can exchange solvent and substances with their environment and can
change their volume in response to external stimuli, which is unlike what is seen
in other materials. The key to understanding this unique swelling phenomenon
is the osmotic pressure. Here, we will first discuss the osmotic pressure of the
polymer solution.

The osmotic pressure (𝛱) is calculated as a change in the free energy of mix-
ing (Fmix) when changing the number of solvent molecules (nB) with a constant
number of polymers in the system (nA).

𝛱V1 = −
(
𝜕Fmix

𝜕nB

)
nA

(2.21)

where V1 is the molar volume of a solvent molecule. Fmix is determined using the
difference in entropy (ΔS) and enthalpy (ΔU) before and after the mixing of the
solvents and polymers.

F = ΔU − TΔS (2.22)

In Sections 2.3.1 and 2.3.2, we introduce the derivation of ΔS and ΔU proposed
by Flory [7] and Huggins [8].

Semipermeable

Figure 2.7 System consisting of a polymer solution and a solvent phase separated by a
semipermeable membrane.
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2.3.1 Entropy Change in Mixing

The entropy change when mixing polymer A and solvent B can be formulated by
considering the entropy of placing each molecule in a lattice space.

We define V A and V B as the total volume occupied by polymer A and solvent B
in the lattice, respectively. NA and NB are the number of lattice points occupied
by each molecule (corresponding to the degree of polymerization). For simplicity,
we assume that the mixing of A and B is ideal, and the volume of the system
after mixing is V A + V B. Assuming that the volume of one lattice point is V 0, the
number of molecules A (𝜈A) and B (𝜈B) can be represented as follows:

𝜈A =
VA

V0NA
(2.23)

𝜈B =
VB

V0NB
(2.24)

The number of lattice points occupied by A (nA) and B (nB) is represented by Eqs.
(2.25) and (2.26), respectively:

nA =
VA

V0
= n𝜙A (2.25)

nB =
VB

V0
= n𝜙B (2.26)

where 𝜙A and 𝜙B are the volume fractions of A and B in the mixed system. The
number of total lattice points (n = nA + nB) is given by the following:

n =
VA + VB

V0
(2.27)

The configuration entropy is represented based on the number of situations in
which A and B can be arranged in the lattice (Ω).

S = k lnΩ (2.28)

Let us consider how to arrange one lattice point of A (Figure 2.8). Given that
one can choose any lattice point, the number of arrangements before mixing is
nA, and after mixing is n. Therefore, the entropy change, ΔS, during mixing can
be written as follows:

ΔS = k ln n − k ln nA = k ln n
nA

= −k ln𝜙A (2.29)

This equation shows that the number of cases that can be considered increases by
a factor of 𝜙A

−1 after mixing. When considering the arrangement of the next lat-
tice point, the number of arrangements before mixing is nA − 1, and after mixing,
it becomes n− 1. Although one can express all entropy changes, these expressions
are extremely difficult to handle. Therefore, we make the following two assump-
tions:

1. The number of arrangements of all units of polymer A increases by a factor of
𝜙A

−1 after mixing and that of polymer B increases a factor of 𝜙B
−1.

2. The conformational entropy of the polymers does not change during mixing.
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+

nA

nB

n

Figure 2.8 Entropy change by mixing polymers and solvents.

Assumption 1 can be rephrased as “the consequences of Eq. (2.29) can be applied
even when arranging the second and subsequent units, and the entropy change
during mixing is always−k ln𝜙A.” Assumption 2 can be rephrased as “when a unit
in the center of polymer A (black circle in Figure 2.8) is arranged, the adjacent
parts are automatically arranged.” Of course, depending on the position of the
center and the other polymers, it is often impossible to arrange other units in
their original form. Even in that case, other units are arranged in an appropriate
conformation with the same conformational entropy. Under these assumptions,
we only consider arranging 𝜈A and 𝜈B units, which are the number of molecules
A and B, respectively. Therefore, the entropy change in the system during mixing
can be written as follows:

ΔSmix =
∑
𝜈A

(−k ln𝜙A) +
∑
𝜈B

(−k ln𝜙B) = −k(𝜈A ln𝜙A + 𝜈B ln𝜙B) (2.30)

The entropy change per lattice point ΔSmix is given by Eq. (2.31):

ΔSmix =
ΔSmix

n
= −k

(
𝜙A

NA
ln𝜙A +

𝜙B

NB
ln𝜙B

)
(2.31)

Here, given that A is a polymer and B is a small molecule, NA = N and NB = 1.
When we define 𝜙A = 𝜙 and 𝜙B = 1−𝜙, we obtain the following:

ΔSmix = −k
(
𝜙

N
ln𝜙 + (1 − 𝜙) ln(1 − 𝜙)

)
(2.32)

In general, ΔSmix ≥ 0 for 0≤𝜙≤ 1, the entropy increases with mixing. Given that
ΔF = ΔU −TΔS, the system is stabilized by mixing due to the effects of entropy.
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2.3.2 Enthalpy Change in Mixing

The enthalpy change in mixing is estimated using a mean-field assumption. Under
the mean-field assumption, segments A and B are arranged homogeneously in the
system and are not correlated, and the volume fractions of segment A and solvent
B in any region are equal to the average values, 𝜙A and 𝜙B. Strictly speaking, this
assumption does not hold when the polymer concentration is sufficiently lower
than the overlapping density (𝜙A ≪𝜙*) because at dilute concentrations, the seg-
ment concentration is locally high in the region where the polymer exists but is
0 in the region where no polymer exists. However, for the sake of simplicity, we
accept this assumption and proceed with the discussion.

Assuming that the unit interaction energies between AA, BB, and AB are uAA,
uBB, and uAB, respectively, the interaction energies (UA and UB) between adjacent
segments of polymer A and solvent B can be written as follows:

UA = uAA𝜙A + uAB𝜙B

UB = uAB𝜙A + uBB𝜙B (2.33)

The total interaction energy of the system, U , is given by Eq. (2.34):

U =
znAUA

2
+

znBUB

2
= zn

2
(𝜙AUA + 𝜙BUB) (2.34)

where z is the number of adjacent lattice points and the factor 1/2 is introduced
to account for the double counting. By substituting Eq. (2.33) into Eq. (2.34), we
obtain the following:

U = zn
2
{𝜙(uAA𝜙 + uAB(1 − 𝜙)) + (1 − 𝜙)[uAB𝜙 + uBB(1 − 𝜙)]}

= zn
2
[uAA𝜙

2 + 2uAB𝜙(1 − 𝜙) + uBB(1 − 𝜙)2] (2.35)

This is the total interaction energy in the mixed state. Next, let us consider the
interaction energy before mixing. Given that a single A phase contains nA seg-
ments with only AA interactions, the interaction energy of a phase of segment A
is given by the following:

znA

2
uAA = zn

2
𝜙uAA (2.36)

Applying the same procedure to solvent molecules B, one can obtain the total
interaction energy of separated A and B phases (U0).

U0 = zn
2
[𝜙uAA + (1 − 𝜙)uBB] (2.37)

Thus, the change in total interaction energy that occurs during mixing is

U − U0 = zn
2
[uAA𝜙

2 + 2uAB𝜙(1 − 𝜙) + uBB(1 − 𝜙)2]

− zn
2
[𝜙uAA + (1 − 𝜙)uBB]

= zn
2
[−uAA𝜙(1 − 𝜙) + 2uAB𝜙(1 − 𝜙) − uBB𝜙(1 − 𝜙)]

= zn
2
𝜙(1 − 𝜙)(2uAB − uAA − uBB) (2.38)
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The change in the interaction energy per lattice point (ΔUmix) is as follows:

ΔUmix =
U − U0

n
= z

2
𝜙(1 − 𝜙)(2uAB − uAA − uBB) (2.39)

Here, we introduce the interaction parameter (𝜒) as defined by Flory.

χ = z
2
(2uAB − uAA − uBB)

kT
(2.40)

Using the interaction parameter, ΔUmix is represented by Eq. (2.41):

ΔUmix = 𝜒𝜙(1 − 𝜙)kT (2.41)

2.3.3 Basic Equation of Osmotic Pressure

Based on the estimated values of entropy and enthalpy, the total energy change
from mixing is given by ΔFmix.

ΔFmix = nΔFmix = n(ΔUmix − TΔSmix)

= nkT
[
𝜙

N
ln𝜙 + (1 − 𝜙) ln(1 − 𝜙) + 𝜒𝜙(1 − 𝜙)

]
(2.42)

We then estimate the osmotic pressure. By substituting Eq. (2.42) into Eq.
(2.21), we obtain Eq. (2.43):

𝛱V1 = −
(
𝜕Fmix

𝜕nB

)
nA

= −
⎛⎜⎜⎜⎝
𝜕

(
nkT

[
𝜙

N
ln𝜙 + (1 − 𝜙) ln(1 − 𝜙) + 𝜒𝜙(1 − 𝜙)

])
𝜕nB

⎞⎟⎟⎟⎠nA

= −kT
⎛⎜⎜⎜⎝
𝜕

(
nA

N
ln𝜙 + nB ln(1 − 𝜙) + 𝜒nA(1 − 𝜙)

)
𝜕nB

⎞⎟⎟⎟⎠nA

= −kT
(nA

N
𝜕(ln𝜙)
𝜕nB

+ ln(1 − 𝜙) + nB
𝜕(ln(1 − 𝜙))

𝜕nB
+ 𝜒nA

𝜕(1 − 𝜙)
𝜕nB

)
(2.43)

in which the following relationship was used:

nA = n − nB = n𝜙 (2.44)

The calculation was then conducted using the following relationship:(
𝜕𝜙

𝜕nB

)
nA

=
𝜕

(
nA

nA+nB

)
𝜕nB

= −
nA

(nA + nB)2 = −𝜙
2

nA
(2.45)

𝛱V1 = −kT
(
− 𝜙

N
+ ln(1 − 𝜙) +

nB

nA

𝜙
2

1 − 𝜙
+ 𝜒nA

(
𝜙 −

nB

nA
𝜙

2
))

(2.46)
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Finally, using the following relationship, one obtains an equation representing
the osmotic pressure of polymer solutions:

nB

nA
= 1 − 𝜙

𝜙

(2.47)

𝛱V1 = kT
(
𝜙

N
− 𝜙 − ln(1 − 𝜙) − 𝜒𝜙2

)
(2.48)

To understand the nature of osmotic pressure, we modify Eq. (2.48) using the
Tailor series ln(1−𝜙)≈−𝜙 + 𝜙2/2.

𝛱V1

kT
= 1

N
𝜙 +

(1
2
− 𝜒

)
𝜙

2 (2.49)

When we focus on an extremely dilute region (𝜙<N−1), the first term dominates
the osmotic pressure.

𝛱V1

kT
≈ 1

N
𝜙 (2.50)

Given that 𝜙/N is proportional to the molar concentration of the polymer, this
equation is equivalent to the ideal gas law. Notably, there is no contribution from
the enthalpy term containing 𝜒 , suggesting that the osmotic pressure is deter-
mined only by the molar concentration and is independent of the solubility of the
polymer. The formal expression in Eq. (2.50) is called the van’t Hoff equation and
is used to measure the molecular weight of polymers from their osmotic pressure.
Notably, the previously mentioned equation only holds at extremely dilute con-
centrations since the N of the polymer generally exceeds 100. In a region with
slightly higher concentrations, it is necessary to consider the term 𝜙

2. Even at
such concentrations, when 𝜒 = 0.5 (𝜃 state), the second term of Eq. (2.49) can-
cels, and Eq. (2.50) holds. Note that the prefactor of 𝜙2 in Eq. (2.49) consists of
two different components: “1/2” is the contribution of the entropy, and “𝜒” is the
contribution of enthalpy. That is, in the 𝜃 state, the interaction energy (ΔUmix)
between segments cancels the 2nd-order of mixing entropy. Although Eq. (2.49)
is also an approximation for small 𝜙, even at 𝜙 = 0.1, this approximation is too
rough in some cases. At higher polymer volume fractions, terms with higher
orders cannot be ignored.

2.3.4 Phase Separation of the Polymer Solution

In Section 2.3.3, we introduced the osmotic pressure of miscible systems in which
the polymer and solvent molecules were randomly arranged. However, some sys-
tems show multiple phases that are not compatible with each other, i.e., phase
separations. In this section, let us consider the conditions under which a cer-
tain polymer solution undergoes a phase separation. Here, we consider a case
in which two phases (Phase 1 and Phase 2) with different polymer volume frac-
tions (𝜙1 and 𝜙2, respectively) coexist (Figure 2.9). The phases contain n1A and
n2A polymer molecules A and n1B and n2B solvent molecules B, respectively.
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ϕ1 ϕ2

n1B
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Figure 2.9 Phase separation of a
polymer solution; coexistence of two
phases with different compositions.

Given that this coexisting system is closed to the outside environment, the fol-
lowing equations can be established:

n1A + n2A = nA

n1B + n2B = nB (2.51)

These equations show that the movement of a molecule A from Phase 1 to Phase 2
does not directly influence other molecules; molecules A and B move indepen-
dently, and Eq. (2.51) does not specify the number of molecules in Phases 1 and 2.
In this system, the condition of phase equilibrium is written as follows:(

𝜕Fmix

𝜕n1B

)
n1A

=
(
𝜕Fmix

𝜕n2B

)
n2A

(2.52)

This differentiation shows the free energy change when molecule B moves among
the phases, and this value is called the chemical potential (Δ𝜇). This equation
shows that there is no energy change when molecule B moves from Phase 1 to
Phase 2, which is a condition for the coexistence of two phases. By substituting
Eq. (2.42) into Eq. (2.52), one obtains Δ𝜇.

Δ𝜇 =
(
𝜕Fmix

𝜕nB

)
nA

= kT
(
𝜙

N
− 𝜙 − ln(1 − 𝜙) − 𝜒𝜙2

)
(2.53)

Note that the derivation method is almost the same as that of 𝛱 in the Section
2.3.3, and the only difference is that Δ𝜇 has the opposite sign as𝛱V 1. Figure 2.10
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Figure 2.10 𝜙-Dependence
of Δ𝜇 with different 𝜒
(N = 150). At 𝜒 > 0.584, Δ𝜇
has a local maximum and
minimum.
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shows the dependence of Δ𝜇 on 𝜙 when N = 150. When 𝜒 is small, Δ𝜇 is always
negative over the whole composition and monotonically decreases. That is, as the
concentration of B in the system increases, the system stabilizes, so molecules A
and B are miscible over the entire concentration range. On the other hand, if 𝜒
exceeds a certain threshold, as 𝜙 increases, the function has a local maximum
after a local minimum and obviously shows two compositions with equal Δ𝜇.
Under these conditions, two phases satisfying Δ𝜇(𝜙1) = Δ𝜇(𝜙2) coexist.

The fact that Eq. (2.53) has both a local minimum and a local maximum can be
explained by the following equation having two different solutions:(

𝜕Δ𝜇
𝜕𝜙

)
T ,P

= 0(
𝜕Δ𝜇
𝜕𝜙

)
T ,P

= −1 + 1
N

− 1
𝜙 − 1

− 2𝜒𝜙 = 0

2𝜒𝜙2 +
(

1 − 1
N

− 2𝜒
)
𝜙 + 1

N
= 0 (2.54)

Here, the condition 0<𝜙< 1 was utilized. Let us investigate the critical value of𝜒
at which phase separation begins to occur. The form of the function at the critical
point is shown in Figure 2.10 when 𝜒 = 0.584, i.e. when Eq. (2.54) has a double
root. Considering that expression Eq. (2.54) is a quadratic expression of 𝜙, the
equation having a double root is expressed as follows:(

1 − 1
N

− 2𝜒
)2

−
8𝜒
N

= 0

𝜒c =
1
2

(
1 + 1

N

)
+
√

1
N

(2.55)

𝜒c indicates the critical point at which phase separation begins to occur. As
shown in Figure 2.11, 𝜒c decreases with increasing N , suggesting that at higher
molecular weights, phase separation is more likely. Although 𝜒c asymptotically
approaches 𝜒c = 1/2 (under 𝜃 conditions) for extremely high N , this condition

Figure 2.11 N-Dependence
of 𝜒c.
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Figure 2.12 Dependence of
the polymer volume fraction
on N in a dilute phase (𝜙1)
(𝜒 = 0.562).

rarely holds considering that conventional polymers have N values that are at
most on the order of 102–103.

Next, we focus on the condition 𝜒 > 𝜒c. The two distinct roots of Eq. (2.53) are
represented as follows:

𝜙 =
2𝜒 + 1

N
− 1 ±

√(
2𝜒 − 1

N
− 1

)2
− 4

N

4𝜒
(2.56)

Here, we define the polymer volume fraction of a dilute phase as 𝜙1 and show it
as a function of N (Figure 2.12). 𝜙1 decreases with increasing N , suggesting that
a high molecular weight enhances the tendency toward phase separation.

2.3.5 Scaling of Osmotic Pressure

de Gennes claimed that the lattice-based mean-field theory discussed in the
Section 2.3.3 fails in a good solvent, particularly at low concentrations because
the chains are swollen and avoid each other at concentrations below c*. The
effect of excluded volume and even correlations caused by covalent bonding
between polymer segments are not taken into consideration in this model. Since
the segments are localized near the center of the polymer, the segment density
is not uniform inside the polymer chain. Of course, 𝜙 does not include such
information. de Gennes solved the problem by scaling the osmotic pressure. The
osmotic pressure can be expanded to the power series of the concentration (the
virial expansion).

𝛱

kT
= c

N
+ B2

( c
N

)2
+ B3

( c
N

)3
+ O

(( c
N

)4
)

(2.57)

Here, c is the number density of the segments (m−3), N is the degree of polymer-
ization of the polymer, and B2 and B3 are the second and third virial coefficients,
respectively. Notably, c/N is the number density of the polymers (m−3). At the
limit of dilution, the second and higher terms are negligible, and the osmotic pres-
sure is proportional to the number density of the polymer, similar to the ideal gas
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law (see Eq. (2.50)). However, in general, the influence of the second term, which
is from the interactions between two polymers, cannot be completely ignored
even at dilute concentrations (𝜙<𝜙*). In the case of a good solvent (𝜈 = 0.6),
polymers behave like a rigid sphere with radius RF in the dilute region. Under
these conditions, the second virial coefficient is a constant proportional to RF

3,
and the following equation holds:

𝛱

kT
= c

N
+ (constant) × RF

3
( c

N

)2
+ O

(( c
N

)3
)

(2.58)

The validity of this equation was experimentally examined by direct observation
of 𝛱 and light scattering in many systems [9].

We now shift our focus to the semidilute region, 𝜙*<𝜙≪ 1. To estimate the
scaling in this concentration range, we assume the following for Eq. (2.58):

1. In the dilute region, 𝛱/kT is proportional to c/N (each term has the same
units).

2. In the semidilute region, the contribution of the two-body interaction
(B2 ≈RF

3) is large.
3. The main contributor to the second term in Eq. (2.58) is transformed to

c/N(RF
3c/N), and RF

3c/N is dimensionless.

Based on the previously mentioned considerations, c/N can be used as a key tool
for matching units on both sides of the equation, and the power of RF

3c/N is used
as a dimensionless quantity, and thus the following scaling equation is obtained:

𝛱

kT
= c

N

(
RF

3 c
N

)x
= c

N

( c
c∗
)x

(2.59)

Here, c * ≈N/RF
3 was utilized (see Section 2.2). As a result, the polymer con-

centration relative to c* is an important factor for determining the osmotic pres-
sure. To determine x in Eq. (2.59), requirements, such as “osmotic pressure is
not dependent on the molecular weight of the polymers,” must be set. This is
because if the concentration is higher than c*, the system is a mixed model, and
the properties will be governed by the blob regardless of the molecular weight
of the polymers. By transforming the equation using RF = aN3/5, the following
equation can be obtained:

𝛱

kT
≈ c

N

(
RF

3 c
N

)x
∼ 1

N
(N4∕5)x (2.60)

To eliminate the dependence on N , one should set x = 5/4 and obtain the follow-
ing scaling:

𝛱

kT
= c

N

( c
c∗
)5∕4

∼ c9∕4 ∼ 𝜙
9∕4 (2.61)

Finally, we investigate the relationship between the osmotic pressure and blobs.
As seen in Section 2.2, blobs are an important concept in the semidilute region.
Based on the dependence of the blob size on𝜙 (𝜉 ∼𝜙−3/4), Eq. (2.61) can be trans-
formed as follows:

𝛱

kT
∼ 1
𝜉3 (2.62)
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This equation shows that the osmotic pressure is proportional to the number den-
sity of blobs, again indicating the importance of the blob concept in the semidilute
region. The blob is a unit that causes osmotic pressure. This equation can be
applied not only to any solution system characterized by a good solvent but also
to other solutions characterized by 𝜈 as in the previous discussion.

𝛱

kT
∼ 1
𝜉3 ∼ 𝜙

3𝜈
3𝜈−1 (2.63)

The consequences of semidilute solutions are expected to be applicable to a wide
range of polymer gels because the overlapping concentration of polymer gels,
by definition, is 0 since the molecular weight of a three-dimensional network
is infinite (substitute N = ∞ in Eq. (2.10)). Once a gel is formed, the system
can be regarded as a semidilute system even if the polymer concentration is
extremely low.

Column 2: Blob Size of a Polymer Gel

A blob is defined by de Gennes as correlation length of polymers in a semidiluted
polymer solution. Although the concept of blob was explained by Section 2.2, it
may be hard to catch the sense. Here, we provide another approach to explain the
concept of blob for better understanding.

We focus on a monomer #0 contained in a polymer chain in semidilute solu-
tion. In a semidiluted solution, although it is necessary to consider a situation
where a lot of polymers interpenetrate with each other, for simplicity, we depict
only two polymers (marked with white and gray). The first problem is whether
monomer #0 can distinguish monomer #1, which is directly connected to #0,
from monomer #a, which only presents in the vicinity of #0, and belongs to
another polymer.

The answer is “Yes,” because the interaction based on a direct connection is
strong. This type of correlation based on direct connection gradually decays as
going away to #2, #3, #4, and finally the interaction via direct connection is neg-
ligible in #5. Therefore, from the monomer #0, both #5 and #a exist at similar
distances and cannot be distinguished from each other.

As such, there are strong “correlations” in between the two monomers that are
directly connected and move with interactions, such as monomers #0 and #1.
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This correlation decays with distance, and the distance at which the correlation
disappears is referred to as the “correlation length” or “blob size.” Thus, a blob may
be rephrased as a group of monomers having effective correlations, and the size
has the order of nanometers. The blob size decreases with an increase in polymer
concentrations, because monomers belonging to other polymers penetrate into
the polymer chain and screen out the correlation.

Next, we consider blobs of polymer gels, where the definition of the correlation
length is the same with semidiluted polymer solutions. The problem is how much
crosslinks influence the correlation length. There have been experimental results
where only the crosslinks are added to a semidiluted polymer solution, and they
have shown that the correlation length is not greatly influenced by crosslinks.
This result can be understood if we consider the distance between crosslinks is
larger than the blob size. In the case where only less than one crosslink exists
in blob size, crosslinks do not influence the correlation length strongly. Based on
the original definition, the correlation length is a parameter that reflects the solu-
tion properties, such as osmotic pressure, rather than network properties. Thus,
the correlation length is not directly related to the length between neighboring
crosslinks [10].
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Definition of Polymer Gels and Rubber Elasticity
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3.1 Elasticity of Gels

In Chapters 1 and 2, we learned about the characteristics of isolated polymer
chains and polymer solutions. In this chapter, we discuss the correlation between
the structure and physical properties of polymer gels based on Chapters 1 and 2.
As an overview of the mechanical properties of polymer gels, we first show a typ-
ical engineering stress (𝜎)–elongation ratio (𝜆) curve for the uniaxial stretching
of a polymer gel (Figure 3.1). The stress and elongation ratio are the normalized
force and the length of the test piece during stretching and are defined as follows:

𝜎 = F
S0

(3.1)

𝜆 = L
L0

(3.2)

Here, F is the force applied to the test piece, S0 is the sectional area of the ini-
tial test piece, L0 is the length of the initial test piece, and L is the length after
the stretching. The strain (𝜀), defined in Eq. (3.3), can be used as an indicator of
deformation instead of 𝜆:

𝜀 =
L − L0

L0
= 𝜆 − 1 (3.3)

Generally, polymer gels have high deformability and can be extended by a fac-
tor of more than 10 without any damage in special cases. Such high stretchability
is achieved, because the mechanical response of the polymer gel is controlled by
the conformational change in the polymer chain that forms the polymer gel, i.e.
rubber elasticity. Therefore, the architecture of the polymer network determines
the mechanical properties of the polymer gel. Thus, clarifying the correlation
between the structure and physical properties in the science of polymer gels is
extremely important. For example, this correlation is important for guiding mate-
rial design, and it can serve as a methodology to estimate network structures. As
the latter example may be less clear, we will discuss it in more detail.

In the case of metals, for example, their atomic arrangement can be directly
observed, and their physical properties are measurable. Because both their

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 3.1 Stress–elongation curve of
a hydrogel.

structure and properties are determined independently, it is possible to verify a
model relating the structure to the physical properties, resulting in a full under-
standing of the material. When an ideal model describing the structure–property
relationship is obtained, material science will then be a mature and sophisticated
field.

On the other hand, the three-dimensional network of a polymer gel cannot
be directly observed to date. Thus, establishing concrete models for predicting
structure–property relationships is difficult. We need to begin by discussing a
structure estimated from the feed conditions, which is far from the actual struc-
ture due to the inherent heterogeneity (see Section 3.8). Thus, it is difficult to
discuss the structure–property relationships, and it is practically impossible to
verify models. As a result, a plurality of models predicting each physical property
coexist. In the strictest sense, the validities or the applicable conditions of mod-
els are currently mostly unknown. Therefore, clarifying the structure–property
relationships of polymer gels through the systematic study of polymer gels with
well-defined network structures is of great interest (see Part 2: Experiments).

Because the polymer network structure cannot be directly observed, the mod-
els are uncertain. However, even in this situation, it is important to know the
structures of the gels. Therefore, estimating the structure based on a combination
of a model and a physical property is common even today. Among the physical
properties of a gel, the elastic modulus is one of the most conveniently measur-
able and is the parameter most frequently used to estimate the structure. In this
chapter, we will first discuss the definition of polymer gels and then models for
predicting the elastic modulus.

3.2 Definition of Polymer Gels

Polymer gels are “a three-dimensional polymer network structure containing
a solvent”. How can we experimentally confirm that polymer chains form a
three-dimensional network structure? Here, we introduce two representa-
tive methods for determining the gelation using rheological and scattering
experiments.
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3.2.1 Criterion for Gelation by Rheology

In rheological measurements, the strain response to a certain stress and the stress
response to a certain strain are measured as a function of time. For example, when
a constant stress is applied to a Newtonian liquid, which is an ideal liquid, it con-
tinues to flow at a constant strain rate. On the other hand, when constant stress
is applied to a Hookean elastic body, which is an ideal solid, it is deformed to
a constant deformation ratio. Conversely, matter that flows at a constant strain
rate is a liquid, while matter that deforms to a constant strain is a solid. Since a
polymer gel is a “solid” composed of a three-dimensional network, by definition
it does not flow. Here, we define gelation using the stress relaxation test, which is
a representative rheological measurement.

In stress relaxation tests, a certain strain is instantly applied to a substance, and
the time development of stress (𝜎(t)) required to maintain the strain is observed
(Figure 3.2). Both polymer melts and polymer solutions exhibit elasticity over
short periods. However, they flow when the observation time is increased, and
finally, the stress reaches 0, which is characteristic of a “viscoelastic liquid.” On
the other hand, since the gel has a three-dimensional network structure, the stress
does not reach 0 and remains finite even after long-term observation. Occasion-
ally, the stress relaxes over a short period even in the gel. These behaviors are
characteristic of a “viscoelastic solid.” In this way, the difference between liquids
(sol) and solids (gel) can be observed upon long-term observation.

In rheology, a material that has a modulus that shows a finite plateau over a
long timeframe is a gel, while a material that has a relaxation modulus of 0 over a
long time period is a sol. During the transition from sol to gel, the viscosity gradu-
ally increases and tends toward infinity at the sol–gel transition point. Although
many researchers have attempted to evaluate the divergence point of viscosity,
direct observation is difficult because of the dramatic change in viscosity near the
critical point. Winter and Chambon therefore identified the critical point using
dynamic viscoelasticity measurements under the sinusoidal strain [1]. The depen-
dences of strage modulus (G′) and loss modulus (G′′) on frequency (𝜔) can be
seen in the dynamic viscoelasticity measurements, and these dependences reflect
the elasticity and the viscosity of the system, respectively. Here, the frequency in
the dynamic measurement is inversely proportional to the observation time in

Figure 3.2 Stress relaxation behavior of a
solid and a liquid.
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Figure 3.3 Frequency dependence of the storage modulus (G′) and loss modulus (G′′) of a
polydimethylsiloxane (PDMS) elastomer quenched during the reaction. The curves were
shifted side to side (by factor A) to avoid overlap [1].

the static measurement; long-term observation in the static measurements cor-
responds to low-frequency measurements in the dynamic measurements.

In dynamic measurements, liquids show terminal flow behavior, which is char-
acteristic frequency dependences of G′ ∼ 𝜔

2 and G′′ ∼ 𝜔
1 in a low-frequency

region. On the other hand, in the gel state, a plateau of G′ with no frequency
dependence occurs in a low-frequency region (G′ ∼ 𝜔

0 and G′′ ∼ 𝜔
0). Gels take

a self-similar (fractal) structure at the gelation point, and a specific power law
(G′ ≈ G′′ ∼ 𝜔

𝛽) is observed. Here, the index 𝛽 reflects the fractal structure. This
spectrum indicates that the viscosity diverges to infinity and is observed in vari-
ous gels regardless of the type of crosslinks present. This criterion for determining
the gelation point is called the “Winter–Chambon criterion” (Figure 3.3).

3.2.2 Criterion for Gelation by Scattering

When we irradiate matter with light, X-ray photons, and neutrons, new light,
X-rays, and neutrons will be scattered in all directions due to the interactions
between the molecule and the irradiant, i.e. scattering. Because light, X-rays,
and neutrons all act as waves, we can see the interference patterns of the scat-
tered waves on a screen placed some distance away from the matter. Because the
interference patterns reflect the spatial relationship among the molecules in the
matter, the interference pattern provides information on the internal structure
of the matter. The interference pattern changes rapidly because of the motion
of the molecules. By averaging the scattering patterns over a long period (static
scattering), we can obtain statistical information on the intramolecular and inter-
molecular interactions. Looking at the changes in the interference patterns over
time (dynamic scattering) can help elucidate the molecular motion of the polymer
chains.
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Figure 3.4 Small-angle neutron
scattering of homogeneous Tetra-PEG
gel and heterogeneous
poly(N-isopropylacrylamide) gel.
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Generally, the network structures of polymer gels are highly heterogeneous.

Strong excess scattering, which is not observed in polymer solutions, is often
observed at small scattering angles (q< 0.01 Å−1), where q is the magnitude of
the scattering vector. The scattering angles that show the excess scattering cor-
respond to a few tens of nanometers in real space [2–4]. However, in the case of
dynamic scattering for these heterogeneous networks, a clear reduction in the
dynamic coherence (often called the initial amplitude) is generally observed in
the time correlation function. The decrease in the dynamic coherence indicates
the immobilization of the polymer chains in the observed area. The excess scat-
tering at low scattering angles and the reduction in dynamic coherence are widely
observed at sol–gel transitions and thus have been recognized as criteria for rec-
ognizing such transitions.

However, similar excess scattering is also reported in polymer solutions when
the polymer chains form aggregates. In addition, a series of gels with very small
excess scattering signals have been observed (Figure 3.4), suggesting that the
excess scattering is not always the best indicator of a sol–gel transition [5].
Furthermore, a recent study found gelation with no excess scattering and
no deterioration of the dynamic coherence. These findings suggest that the
definition of gels must be reviewed.

3.3 Mesh Size of a Polymer Gel

The most popular and intuitive structural parameter for characterizing a polymer
network may be mesh size. However, as mentioned earlier, direct observation is
not possible with the current technology. Therefore, the mesh size is currently
indirectly estimated using some assumptions. There are three methods for esti-
mating the average mesh size:

1. Calculating from the feed concentration of a crosslinking agent or the degree
of polymerization of a chain connecting neighboring crosslinking points.

2. Calculating from the elastic modulus or swelling degree.
3. Assuming the blob size obtained by the scattering experiment is equal to the

mesh size.
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Network strand Crosslink

Mesh size

Figure 3.5 Schematic picture of a
tetra-functional network.

Which method is the most suitable way to determine the mesh size of polymer
gels? It depends on the properties of greatest interest; for example, these could
be the extensibility or the permeability of a substance. Based on our experimen-
tal results, there is no single measure of mesh size that well characterizes both
properties. Conversely, the mesh sizes estimated by methods 1–3 are all related
to certain physical properties. Here, we discuss method 1 in detail.

For simplicity, let us consider the tetra-functional network structure, as shown
in Figure 3.5. The distance (d) between the crosslinking points can be calculated
under the assumption that all of the crosslinking agents (crosslinking agent
density, c) react perfectly and are homogeneously distributed. Let us divide the
reaction space into equivalent cubes with a certain volume, put crosslinking
points one by one into these cubes, and connect all pairs of neighboring
crosslinking points with polymer chains. Since the volume that one crosslinking
point occupies is 1/c (m3), the length of one side of the cube is

d =
(1

c

)1∕3
(3.4)

For example, the conventional case of c = 1 mol/m3 gives d approximately
10−7–10−8 m. Indeed, the diffusion of quantum dots (diameter of approximately
10 nm) is greatly hindered by conventional polymer gels; thus, this rough
estimation method seems to give a realistic value.

Next, we try to estimate this parameter from the degree of polymerization
of the chains connecting the crosslinking points (N). Consider the situation in
which chains containing functional groups at both chain ends are crosslinked
in their current form to generate a network. In this situation, the mesh size can
be estimated as the end-to-end distance of a chain. When we set N = 102 and
the monomer length (assumed to be equal to the persistence length) to 5 Å, the
end-to-end distance is 5× 10−9 m. In the case of forming a network from the
monomer and the crosslinking agent, the degree of polymerization is estimated
by dividing the monomer concentration by the concentration of the crosslink-
ing agent, and the same calculation is used to obtain the distance between the
crosslinking points.

Although both methods give similar mesh sizes, the two estimations are based
on completely different pictures of gelation. When we use the first estimation
based on c, we implicitly accept the change in conformation during the crosslink-
ing process; the structure of the strands in the network is defined by the density of
the crosslinking agent and not by the conformation of the original uncrosslinked
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polymer chain. On the other hand, in the case of the second estimation based
on N , the network strand is assumed to maintain its conformation during the
gelation process. This assumption implies that forming a gel at a concentration
below the overlapping concentration is difficult, and entanglements are trapped
at high concentrations. Notably, the mesh size estimated here is that in the
“as-prepared state.” We can include the effects of swelling or deswelling on the
mesh size by multiplying by the cube root of the volume change.

3.4 Elastic Modulus

Given that polymer networks consist of a large number of polymers, it is natural
to imagine that the mechanical properties of the gel can be described as the sum
of the mechanical properties of single polymer chains as introduced in Chapter 1.
In particular, regarding the elastic modulus, since only a small deformation region
is considered, we can treat a network strand as an ideal chain obeying a Gaussian
distribution. In Section 3.4.1, we first discuss the affine network model, which
models a polymer network composed of Gaussian chains, and then move to more
complicated models.

3.4.1 Affine Network Model

The simplest model for describing the elastic modulus of a polymer network is
the affine network model proposed by Kuhn [6]. As shown in Figure 3.6, the gel
is initially in a rectangular parallelepiped with three sides of Lx0, Ly0, and Lz0. The
end-to-end vectors of the polymer chains contained in this polymer network are
r0 = (rx0, ry0, rz0).

Let us consider the case where each axis of this rectangular parallelepiped is
stretched by factors of 𝜆x, 𝜆y, and 𝜆z, making each side 𝜆xLx0, 𝜆yLy0, and 𝜆zLz0,
respectively. In this model, we assume that the deformation modes of the entire
gel and microscopic network strand are the same (affine deformation); the

r0 r

Ly0 Ly = λyLy0

Lx = λxLx0
Lz = λzLz0

Lx0

Lz0

(a) (b)

Figure 3.6 The upper two strands are network strands, and the bottom two boxes are gels.
(a) Left strand and box are initial state, and (b) right strand and box are deformed state.
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end-to-end vector deforms in the same manner as the macroscopic deformation
and becomes r = (𝜆xrx0, 𝜆yry0, 𝜆zrz0). Consider the energy change in this network
strand due to deformation. Here, assuming that network strands are ideal chains,
the entropy S(N , r) of a network strand can be written as Eq. (3.5), which is based
on Eq. (1.35):

S(N , r) = − 3kr2

2Na2 + S(N , 0) (3.5)

The difference in energies before and after the deformation (ΔS) is given as the
following:

ΔS = S(N , r) − S(N , r0)

= −
3k(r2 − r0

2)
2Na2

= − 3k
2Na2 (((𝜆xrx0)2 + (𝜆yry0)2 + (𝜆zrz0)2) − (rx0

2 + ry0
2 + rz0

2))

= − 3k
2Na2 ((𝜆x

2 − 1)rx0
2 + (𝜆y

2 − 1)ry0
2 + (𝜆z

2 − 1)rz0
2) (3.6)

Here, because the ideal chain is isotropic and r0
2 = a2N , we can obtain the fol-

lowing:

rx0
2 = ry0

2 = rz0
2 = a2N

3
(3.7)

Substituting Eq. (3.7) into Eq. (3.6), we obtain Eq. (3.8):

ΔS = −k
2
(𝜆x

2 + 𝜆y
2 + 𝜆z

2 − 3) (3.8)

When we set the total number of network strands as n, the energy change by
deformation (ΔF) is given as follows:

ΔF = −nTΔS = nkT
2

(𝜆x
2 + 𝜆y

2 + 𝜆z
2 − 3) (3.9)

Here, let us consider uniaxial stretching behavior. The volume of polymer gel
hardly changes when deformed by stress because the deformation of the polymer
chain requires less energy than is required to change the volume of the solvent,
which is the main constituent of the polymer gel, or than is required to squeeze
the solvent out of the polymer gel. This phenomenon is called incompressibility,
and the following formula holds for incompressible matters:

𝜆x𝜆y𝜆z = 1 (3.10)

As a result, when the polymer gel is stretched along the x-axis, the dimensions
in the directions perpendicular to the stretching axis shrink. Given that the y
direction and the z direction are equivalent, the deformation ratio of each axis
can be written as follows:

𝜆x = 𝜆, 𝜆y = 𝜆z = 𝜆
−1∕2 (3.11)

By substituting Eq. (3.11) to Eq. (3.9), we obtain Eq. (3.12);

ΔF = nkT
2

(𝜆2 + 2𝜆−1 − 3) (3.12)
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The differential of ΔF by the change in length in the stretching direction is the
force (f x) necessary for stretching in the uniaxial direction.

fx =
𝜕(ΔF)
𝜕Lx

= 𝜕(ΔF)
𝜕𝜆Lx0

= nkT
2Lx0

𝜕(𝜆2 + 2𝜆−1 − 3)
𝜕𝜆

= nkT
Lx0

(𝜆 − 𝜆−2) (3.13)

Nominal stress (𝜎) is given by dividing f x by the initial area of the specimen
(Ly0Lz0),

𝜎 =
fx

Ly0Lz0
= nkT

Lx0Ly0Lz0
(𝜆 − 𝜆−2) = nkT

V0
(𝜆 − 𝜆−2) (3.14)

The prefactor in Eq. (3.14) is called the shear modulus, G.

G = nkT
V0

= 𝜈kT (3.15)

Here, 𝜈 (m−3) is the number density of the elastically effective network strands.
Equation (3.15) simply tells us that the contribution of an elastically effective net-
work strand to the elasticity is kT . The initial slope of the 𝜎–𝜆 relationship is
obtained by differentiating Eq. (3.14) with respect to 𝜆 and substituting 𝜆 = 1.

𝜕𝜎

𝜕𝜆

||||𝜆=1
= G(1 + 2𝜆−3)|

𝜆=1 = 3G = E (3.16)

Here, the initial slope, E, is called Young’s modulus or the tensile elastic modulus,
and E = 3G for incompressible materials such as polymer gels.

Figure 3.7 shows the relationship between the stress–elongation curve derived
from Eq. (3.14). As clearly shown in Figure 3.7, the relationship is not linear but
instead strongly nonlinear. This relationship is a feature of entropy elasticity
and is essentially different from energy elasticity, which shows a linear relation.
Figure 3.7 also shows the experimentally obtained stress–elongation curve shown
at the beginning of this chapter. The experimental values in small deformations
are very consistent with the values predicted by Eq. (3.14). However, in the highly
stretched region, the experiment deviated upward from the prediction. This shift
indicates that the chain has been dramatically stretched and is no longer obeying
Gaussian statistics. As discussed in Section 1.1.3, each network strand can be

Figure 3.7 Stress–elongation
curve and the prediction of
neo-Hookean model.
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extended to a maximum length of aN . The affine network model is correct
for small deformations where Gaussian statistics are still applicable. When
stretched to a certain extent, the effects of finite stretchability must be
considered.

3.4.2 Phantom Network Model

The most important assumption in the affine network model is the affine
deformation of the network strands. However, in reality, the deformation at the
network strands can be different from the bulk deformation. Under incom-
pressible deformation, the average position of the crosslinking points should be
approximated by the values determined by the affine deformation, but the true
points can fluctuate around the average positions. James and Guth proposed
the phantom network model, which considers the fluctuation in the crosslinking
points [7]. Here, Gaussian statistics is utilized to consider the fluctuations in the
crosslinking point in the model. Here, the derivation of Rubinstein and Colby
will be explained [8].

We want to know the fluctuation of a certain point (s, x) in a three-dimensional
random walk of N steps where one end is fixed at the origin and the other end
is fixed at X. To simplify the situation, let us first consider the one-dimensional
version of this problem:

There is a 1D random walk starting from the origin and reaching X after N steps.
Among all the random walks that satisfy the above conditions, what is the proba-
bility of being at point x at the sth step?

All events starting from the origin and reaching X at N steps are represented
by the shaded area in the diagram of Figure 3.8. The total number of cases rep-
resented by this shaded area is defined by the probability density distribution
P1D(N , X). Using Eq. (1.21), P1D(N , X) can be written as follows:

P1D(N ,X) = 1√
2𝜋a2N

exp
(
− X2

2a2N

)
(3.17)

We want to explore the cases of passing through (s, x) within the total pos-
sible cases. Although this trajectory is not necessarily linear, conceptually, the
trajectory starts from (0, 0) and reaches (N , X) via (s, x), as shown by the arrows
in Figure 3.8. To estimate the number density function, it is sufficient to consider
the process of reaching x at step s and then advancing by X − x with the remaining
N − s steps as follows:

P1D(s, x) ⋅ P1D(N − s,X − x) = 1√
2𝜋a2s

exp
(
− x2

2a2s

)
⋅

1√
2𝜋a2(N − s)

exp
(
− (X − x)2

2a2(N − s)

)
(3.18)
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Figure 3.8 (a) A polymer chain starting from the origin and goes to X by N steps, through x by
n steps. (b) Conceptual picture of a path starting from origin to (N, X) through (s, sX/N).

Thus, the probability density function is given by (3.19):
P1D(s, x) ⋅ P1D(N − s,X − x)

P1D(N ,X)

=

1√
2𝜋a2s

exp
(
− x2

2a2s

)
⋅

1√
2𝜋a2(N − s)

exp
(
− (X − x)2

2a2(N − s)

)
1√

2𝜋a2N
exp

(
− X2

2a2N

)

= 1√
2𝜋a2 s

N
(N − s)

exp
⎛⎜⎜⎜⎝−

(
x − s

N
X
)2

2a2 s
N
(N − s)

⎞⎟⎟⎟⎠ (3.19)

This is a Gaussian distribution with an average of sX/N and a variance of
s(N − s)/N . This formula tells us that, given that the trajectory finally reaches X
with N steps, it is reasonable that it advances to s/N of the whole course (sX/N)
within s steps. That is, as conceptually shown in Figure 3.8, the straight line
connecting the origin and X is likely to have been achieved. The variance is the
harmonic mean (number of effective monomers: K ) of s and N − s, which are
the number of steps before and after reaching point x, respectively.

K = 1
1
s
+ 1

N−s

= s
N
(N − s) (3.20)

In the one-dimensional random walk shown in Section 1.1.2, the variance was
N , which is the total number of steps. In this case, the dispersion occurs within
the steps of s, but the dispersion that occurs within the subsequent (N − s)
steps also influences the entire dispersion, resulting in the harmonic means
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of these parameters. This conclusion does not change substantially moving to
three-dimensional space, and the expression in three dimensions is as follows:

( 3
2𝜋a2K

)3∕2
exp

⎛⎜⎜⎜⎝−
3
(

x − s
N

X
)2

2a2K

⎞⎟⎟⎟⎠ (3.21)

The most important point in this consequence is that the variance is a2K , which
means that the fluctuation of the point (s, x) can be expressed only using K . For
example, the fluctuation of the center (s = N/2) of a random walk of N steps is⟨x2⟩1/2 = aN1/2/2, which is half the size of the original random walk.

Let us make a leap in our way of thinking. Focusing only on the fluctuation, the
fluctuation of a certain point in an ideal chain in which both ends are fixed is equal
to the fluctuation at the end of the ideal chain with of K steps. In other words,
we can convert constraints from two points into equivalent constraints for one
point (Figure 3.9). The chain after conversion is called “an equivalent chain.” In
the example of both ends-immobilized ideal chain with a degree of polymeriza-
tion of N , the restraints placed on the monomer at the midpoint of the ideal chain
are equivalent to those placed on the monomer at the opposite end of the equiva-
lent chain with a degree of polymerization of N/4; both have the same restraints,⟨x2⟩1/2 = aN1/2/2. With this in mind, the fluctuation of the crosslinking point can
be quantitatively evaluated.

Next, let us consider a situation closer to the polymer networks. From here,
for the sake of simplicity, the degree of polymerization of an ideal chain is N if
there are no special considerations. When a gel is deformed, we deform the out-
ermost layer of the gel. Thus, conceptually, we can envision a wall at the edge
of the gel that deforms the same as the bulk. First, we consider the situation
depicted in Figure 3.10a. Following the previous discussion, the fluctuation of
the point constrained to the outer wall by the two ideal chains is equal to the
fluctuation of the point constrained by an equivalent chain with K = N/2. If we
extend another ideal chain from the point (Figure 3.10b), the fluctuation of the
end point is equal to the fluctuation of the end point of the equivalent chain of
K = N + N/2 = 3N/2. Next, let us consider the case where three ideal chains are
connected to the wall (Figure 3.10c). In this case, first, two of the ideal chains are
converted to an equivalent chain with N/2, and then, the two chains (with N and
N/2) are further converted to an equivalent chain with N/3. The result of N/3

s

N−s
K

(a) (b)

Figure 3.9 Fluctuation of a point along a polymer chain with both ends immobilized. The
effect of immobilization at two points can be converted to immobilization at one point
using K .
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Figure 3.10 Equivalent transformations of the effects of immobilization by multiple chains to
that of an effective chain.

K1

K2

Figure 3.11 Equivalent transformation of the effect of the immobilization by a subnetwork to
that of the effective chain.

can also be directly estimated as the harmonic mean of the three Ns. Therefore,
in general, the fluctuation of a point connected to the wall by f − 1 ideal chains is
equal to that by an equivalent chain with N/(f − 1).

Next, we consider the fluctuation of a crosslinking point sufficiently distant
from the wall. To investigate this problem, we consider the fluctuation of an end-
point of a polymer network, as shown in Figure 3.11.

Figure 3.11 shows the region near the edge of a 4-functional polymer gel.
First, the nine ideal chains connecting the crosslinking points (first generation)
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to the wall are converted into three chains with a degree of polymerization K1.
Equation (3.22) is suggested by the previously mentioned discussion.

K1 = 1
1
N
+ 1

N
+ 1

N

= N
3

(3.22)

Next, looking at the second-generation crosslinking points, they are connected
to the wall by three (K1 + N)-equivalent chains. These three chains are converted
to an equivalent chain with the degree of polymerization K2.

K2 = 1
3

(N
3

+ N
)

(3.23)

Finally, the fluctuation of the endpoint of the network is the same as that of the
endpoint of an equivalent K2 + N chain.

K2 + N = 1
3

(N
3

+ N
)
+ N = N

(
1 + 1

3
+
(1

3

)2)
(3.24)

Notably, the term (1/3)2 is generated from the ideal chain connecting the wall
to the first-generation crosslinking points. The effect of the earlier generation
decreases while approaching the center of the polymer network. A simple expan-
sion of this equation shows that the fluctuation of a point far from the wall is
equivalent to that of the equivalent chain with the degree of polymerization K .

K = N
(

1 + 1
3
+
(1

3

)2
+
(1

3

)3
+ · · ·

)
(3.25)

This equation is generalized for f -functional polymer networks as follows:

K = N

(
1 + 1

f − 1
+
(

1
f − 1

)2

+
(

1
f − 1

)3

+ · · ·

)
(3.26)

Because this is an infinite geometric series, it can be written as Eq. (3.27):

K = N
1 − 1

f −1

=
f − 1
f − 2

N (3.27)

Because this geometric series quickly converges, roughly all crosslinking points
in the polymer network can be considered to be constrained by an equivalent
chain with a degree of polymerization K .

Figuring out how to best determine the elastic modulus is quite difficult even
after discussing these models. However, the goal is almost complete. To estimate
the elastic modulus, we focus on a network strand connecting two f -functional
crosslinking points (Figure 3.12). The two crosslinking points are connected to
the wall at both ends by f − 1 effective chains with degrees of polymerization K .
According to Eq. (3.22), these f − 1 equivalent chains can be converted into an
equivalent chain with the degree of polymerization K/(f − 1). Finally, the par-
tial chain is included in an equivalent chain with the degree of polymerization
N + 2K/(f − 1), which connects the wall to the wall. In other words, in the phan-
tom network model, we consider the stretching of these virtual strands with a
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K K/(f−1)

K/(f−1)
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Figure 3.12 The effective chain in the phantom network model.

degree of polymerization Nph instead of real network strands; it is exactly as the
name suggests.

Nph = N + 2K
f − 1

= N + 2
f − 1

f − 1
f − 2

N =
f

f − 2
N (3.28)

Here, we utilize the conclusion of Eq. (1.35), which shows that the energy required
to deform a polymer chain is inversely proportional to N . Therefore, in the phan-
tom network model, the energy required to deform a network strand is as follows:

ΔF =
f − 2

f
⋅

3kTr2

2Na2 (3.29)

By substituting Eq. (3.29) into the derivation of the affine network model, we can
estimate the elastic modulus from the phantom network model.

G =
f − 2

f
𝜈kT =

(
𝜈 − 2

f
𝜈

)
kT (3.30)

Let us compare this conclusion with that of the affine network model. For the
same polymer network, the affine network model always predicts a higher mod-
ulus than that predicted by the phantom network model. For example, in the case
of a tetra-functional network, the elastic modulus predicted by the affine network
model is double than that predicted by the phantom network model.

In the affine network model, a network strand has an energy of kT . How can
we define an elastic element in the phantom network model? To understand
the nature of these networks, let us consider the network structure shown in
Figure 3.13. Such a strange figure is used because the influence of the edge is too
strong when small networks are considered; the influence of the edge decreases
with increasing network size. Because the network shown in Figure 3.13 has
no edge, it is possible to extract universal properties of networks free from the
edge effects. The numbers of crosslinking points (𝜇), network strands (𝜈), and
independent closed cycles (cycle rank, 𝜉) for each system are also shown in
Figure 3.13. Based on these numbers, the following relationships among these
parameters are predicted [9]:

𝜈 = 2𝜇 (3.31)

𝜉 = 𝜈 − 𝜇 + 1 (3.32)

Equation (3.31) is derived from the fact that the network consists only of
tetra-functional crosslinks. Although four network strands meet at each
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Figure 3.13 Number of crosslinks (𝜇),
network strands (𝜈), and independent
closed cycles (𝜉). Dangling chain-free
network structures. Black circles
indicate crosslinks.

crosslink, each strand is counted twice when counting as it is shown. Generally,
for f -branched networks, the following relationship between the numbers of
network strands and crosslinks holds true:

𝜇 = 2
f
𝜈 (3.33)

Next, Eq. (3.32) holds for general networks without edges. In extremely large net-
works, such as a polymer gel, because 𝜈, 𝜇, and 𝜉 are all extremely large, Eq. (3.32)
can be reduced as follows:

𝜉 = 𝜈 − 𝜇 (3.34)

Using Eq. (3.34), Eq. (3.30) can be reduced to the following:

G = (𝜈 − 𝜇)kT = 𝜉kT (3.35)

This equation implies that an independent cycle has an energy of kT in the phan-
tom network model.

3.5 Network Strands and Crosslinks

Thus far, we have introduced the affine network and the phantom network mod-
els, which describe the elastic modulus. According to these models, the elastic
modulus is estimated from the values of 𝜈 and 𝜉. The next challenge is estimating
𝜈 and 𝜉. Here, we define the network strand and the crosslink in detail.

To understand the nature of this problem, we consider a cleaving process in a
tetra-functional network, as shown in Figure 3.14. Initially, this network is com-
plete and consists of 20 tetra-functional crosslinks and 49 network strands (𝜈 ≠ 2𝜇
due to the edge effect). When one network strand is cut (Figure 3.14a), the num-
ber of network strands decreases by 1, and two of the tetra-functional crosslinks
become tri-functional crosslinks. As a result, the number of crosslinks does not
change, and only the number of network strands changes (decreases by 1).

Next, another adjacent network strand is cut (Figure 3.14b). This cleavage is
different from the previous case and causes a complex change. When focusing
on crosslinks, not only does a tetra-functional crosslink becomes a tri-functional
crosslink but also a tri-functional crosslink becomes a node, i.e. one crosslink
disappears. At the same time, two network strands originally connected by a
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(a)

(b)

(c)

Figure 3.14 Cleavage of network strands in tetra-functional network: cleavage of (a) a strand,
(b) two neighboring strands, and (c) many strands. Black and gray circles indicate 4- and
3-functional crosslinks, respectively.

crosslink become a single network strand. As a result, one crosslink and two
network strands are lost by cutting this second network strand. Figure 3.14c
shows the results of cutting additional network strands; many crosslinks become
tri-functional or are lost, and the number of network strands decreases dramat-
ically. It is easy to imagine that the final result will change depending on which
network strands are cut.

Let us return to the original problem. What parameters can we use to calculate
𝜈 and 𝜉? It will be at most the concentration of a prepolymer, the functionality of
the crosslinking molecule, and the conversion of the reaction between the pre-
polymer and the crosslinking molecule. One of the difficulties in this problem is
that different 𝜈 and 𝜉 are predicted from the same feed conditions depending on
how the partial chains are connected (or cut), as shown in Figure 3.14. Therefore,
estimating 𝜈 and 𝜉 in a network is generally very difficult.

Another challenge comes from the connectivity of the network strands, but we
need to consider a network on a larger scale. Let us consider the condition that a
crosslinking molecule becomes a tetra-functional crosslink. Is it sufficient for the
four chains connected to this molecule to be connected to different crosslinking
molecules? The answer is “No” because the connected crosslinking molecules
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Figure 3.15 When all four arms are
connected to the edge of the polymer
gel, the tetra-functional molecule
becomes a tetra-functional crosslink.

could not be connected anywhere. Therefore, to be connected properly, the
crosslinks must be connected to the edge of the network (Figure 3.15). If all four
chains extending from this crosslink are connected to the edge of the network
without interruption, this crosslinking molecule is a tetra-functional crosslink.
However, this definition further complicates this problem.

At the end of this section, the definitions of crosslinks and network strands are
summarized. A crosslink is a branching point with three or more links to the edge
of the network, and the network strand is a chain connecting two neighboring
crosslinks. In either the affine network model or the phantom network model, the
crosslinks are assumed to move in accordance with the macroscopic deformation.
Because the network strands connecting these crosslinks obey affine deforma-
tion, they are sometimes called elastically effective chains or elastically active
network chains [10].

3.5.1 Percolate Network Model

Thus far, we have discussed the difficulties in determining the concentrations of
crosslinks and network strands. On the other hand, in the previously mentioned
problem, if we consider a branch point ahead of a branch point ahead of a certain
partial chain, the number of branches that can be connected to the edge of net-
work increases in a geometric progression. The probability that a network strand
is connected to the edge is likely to be quite high when the connectivity is high
(see Figure 3.14). Indeed, if a network is ideal to some extent, it is relatively easy
to estimate 𝜈 and 𝜉 by a simple approximation [11].

Let us consider a network made from tetra-functional molecules. Functional
group A is attached to the terminal of the tetra-branched polymer, and functional
group A reacts with another functional group A to form a linkage. The conversion
of the A–A bond forming reactions is defined as p (0≤ p ≤ 1). We focus on the
region where the reaction is almost complete and p is close to 1 and assume the
following:

At p = 1, a perfect lattice consisting only of tetra-functional crosslinks is formed.
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Although this assumption is quite idealized because there are many degrees
of freedom in the way the polymers are connected, we accept this assumption
and can understand the scope of this problem. When the number density of the
tetra-functional polymer is c (m−3), 𝜈 and 𝜇 are given for p = 1 as follows:

𝜇 = c (3.36)
𝜈 = 2c (3.37)

These equations hold because one tetra-functional polymer forms one crosslink
and two network strands. Next, the network strands are gradually cut, which is
the same process as that shown in Figure 3.14. That is, when a network strand
is cut, a network strand disappears, and two tetra-functional crosslinks are con-
verted to tri-functional crosslinks. In this case, the position of the network strand
to be cut next is different. There is only a small probability that the network strand
to be cut next is adjacent to the first cleavage site. Thus, we can consider the same
process for the second cut: a network strand disappears, and two tetra-functional
crosslinks are converted to tri-functional crosslinks. How long will this process
hold? The probability that two neighboring network strands are cut is approxi-
mately represented by (1− p)2. This probability is, for example, 0.01 at p= 0.9 and
0.04 at p = 0.8, which can be negligible in this range of p. In the range where this
process holds, 𝜈 and 𝜇 can be expressed as follows using p:

𝜇 = c (3.38)
𝜈 = 2cp (3.39)

The number of crosslinking points does not change and the number of network
strands decreases in proportion to p. When the affine model or a phantom model
is applied, in the vicinity of p = 1, the elastic modulus, G, is given as follows:

Gaf = 2pCkT (Affine network model) (3.40)
Gph = (2p − 1)CkT (Phantom network model) (3.41)

3.5.2 Bethe Approximation

In Section 3.5.1, we showed that 𝜈 and 𝜇 can be estimated quite easily with the
percolate network model. However, it may seem that the approximation is far
from the real value; indeed, the percolate network model holds only for nearly
ideal networks. Here, we introduce a different approach – Bethe approximation.
While the percolate network model is top-down, Bethe approximation is a
bottom-up methodology and can be utilized to estimate other parameters such
as the gelation point.

In Bethe approximation, the network structure is approximated to a virtual
tree-like structure [10, 12]. The tree structure is simpler than the network struc-
ture. Let us consider the situation where a network structure is made from a
tetra-functional polymer by an AA-type reaction (Figure 3.16), as discussed ear-
lier. When one or two reactions occur, what kind of species will be formed? All
the possibilities are listed in Figure 3.16.

Many kinds of structures with double links and loops, which are often treated
as defects, can be formed. As the number of linkages increases further, we need
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Figure 3.16 Formation of a network structure by an AA-type reaction of tetra-functional
polymers.

to consider a tremendous number of situations, and it becomes impossible to
evaluate all potential situations. Bethe approximation is used to simplify this
problem. As shown in Figure 3.17, a real tree contains only branched structures
and does not contain loops. Such a branching structure can be formed by assum-
ing that no intramolecular reaction occurs in the reaction. Bethe approximation
only considers the structures surrounded by boxes in Figure 3.16. Although this
approximation is often criticized due to this simplification, this is one of the few
analytical methodologies that can describe the polymer network. Notably, this
methodology is a kind of mean-field approximation, and does not focus on the
real tree structure. In Bethe approximation, we can make three assumptions:

1. No intramolecular reactions occur in finite-sized clusters.
2. Every functional group has the same reactivity.
3. The reactivity of the functional groups does not change with other reactions.

Assumption 1 sets Bethe structure and forms the basis of this model. The lim-
itation to finite-sized clusters comes from the fact that it is impossible to dis-
tinguish intramolecular and intermolecular reactions in the case of an infinitely
sized cluster, i.e. a gel. Assumptions 2 and 3 guarantee the constant reactivity
of the functional group during gelation, which is vital for subsequent stochastic
considerations.

Let us now consider the situation in which we know a certain probability, p,
that the ends of branched molecules are linked, and this probability corresponds
to the reaction conversion. We discuss the AA-type reaction of a tetra-functional
molecule as an example. The challenge is in determining if the path extending
from one arm leads to an infinite-sized cluster, as depicted in Figure 3.15. To
solve this problem, we consider the event F as defined as follows:

F: A path extending from an arm does not lead to an infinite-sized cluster.
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Figure 3.17 The structure of
a tree with no intramolecular
connections.

Figure 3.18 Elementary
steps of an AA-type reaction
of tetra-functional polymers.
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The probability P(F) of this event can be calculated by considering the elemen-
tary process that an arm connects to the next molecule, as shown in Figure 3.18.

For the first reaction, there are two possible situations: the arm connects to the
next molecule (probability, p), and the arm does not connect to the next molecule
(probability, 1− p). If the arm does not connect to the next molecule, this arm
cannot connect to the infinite-sized network; thus, the probability of this situa-
tion is included in P(F). On the other hand, if the arm is connected to the next
molecule, we need to consider the three new arms from the next molecule. To
eliminate the connectivity to the infinite-sized network, these three arms should
each be in situation F. Therefore, the probability that the arm connects to the next
molecule but does not lead to the infinite-sized network is given by p⋅P(F)3. P(F)
is given by the sum of these probabilities:

P(F) = p ⋅ P(F)3 + (1 − p) (3.42)

This equation is a cubic function of P(F) and can be transformed to the following:

(P(F) − 1)(p ⋅ P(F)2 + p ⋅ P(F) + p − 1) = 0 (3.43)
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Figure 3.19 Situations in which
a polymer becomes a (a) tri- or
(b) tetra-functional crosslinks.

This function has three solutions, including a trivial solution of P(F) = 1. The
solution is given by considering 0≤ P(F)≤ 1.

P(F) =
√

1
p
− 3

4
− 1

2
(3.44)

By using this equation, P(F) can be estimated from p, which is directly mea-
sured experimentally. Once P(F) is given, the probability that the original
tetra-functional molecule becomes an f -functional crosslink (P(Xf)) is given as
shown in Figure 3.19.

P(X3) =
(

4
3

)
P(F)(1 − P(F))3 (3.45)

P(X4) = (1 − P(F))4 (3.46)

Furthermore, the expected values of crosslinks (𝜇0) and network strands (𝜈0)
formed from a tetra-functional molecule are represented as follows:

𝜇0 = P(X3) + P(X4) (3.47)

𝜈0 = 3
2

P(X3) +
4
2

P(X4) (3.48)

It should be noted that tri- and tetra-functional crosslinks are not distinguished
when determining the number of crosslinks, and the duplication is taken into
account when counting network strands. By taking the product of this expected
value and the number density of the tetra-functional molecule, the number
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density of crosslinks and network strands can be calculated. Furthermore, the
elastic modulus can be estimated by applying the affine model or the phantom
model. Here, we compare the density of the crosslinks and network strands
calculated from the percolate network model and Bethe approximation. As
shown in Figure 3.20, in the region of p ≈ 1, the results are approximately the
same. This result is proof that network structures can be modeled by mean-field
treatment as Bethe approximation when connectivity is high and that both
models can predict the structural parameters of ideal networks.

3.6 Topological Interaction

Essentially, in the models introduced so far, a network strand is the elastic ele-
ment, and the elasticity of the network is described by the sum of the network
strands. However, these models contain serious problems regarding the implicit
stability of the network. That is, the problem of infinite contraction, which was
also mentioned in Chapter 1. Since the most stable end-to-end distance of a net-
work strand is 0, a network of finite size is unstable, and the most stable state is
achieved when the volume = 0. As a result, the gel shrinks spontaneously, which
causes a problem even during the gelation process. When a small amount of
crosslinking occurs in solution, a local heterogeneous density distribution is gen-
erated. A denser region has higher elasticity, resulting in contraction and a further
increase in the density of crosslinks. However, less dense regions will become
even less dense shown in Figure 3.21. Of course, such situations may not occur
in reality, and a uniform network is formed in controlled gelation processes.

Figure 3.21 Schematic picture of the gelation reaction. Circles indicate the crosslinking points.
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(a) (b)

Figure 3.22 Topological interactions
between two polymer chains (a)
attractive and (b) repulsive.

Iwata et al. proposed a model describing the elasticity of a network based on
the topological nature of the polymers, which solves the previously mentioned
problems [13–15]. Since the details of the model are complicated, here we only
introduce the concept of the model (Figure 3.22).

Indeed, the theories of elasticity introduced so far are implicitly based on the
assumption that the network strands have no excluded volume and can pass
through each other. Such a chain is called a phantom chain, and although the
name is similar, it has no direct relationship with the phantom network model.
Even in the situation where the network chains are definitely entangled, such
as 𝜙 = 1, we did not consider the influence of entanglement on the mechanical
properties. However, in reality, a network strand has a definite excluded volume,
no slip-through occurs, and entanglement has a significant influence on the
mechanical properties.

As a simple example, here we consider two chains with excluded volumes.
When these chains are entangled, it is impossible to pull them apart, and a
force counteracting the separation is generated. The force is attractive because
it works to keep the two chains entangled. However, when two nonentangled
macromolecules are brought close to each other, they cannot pass through each
other, and a force counteracting their interaction is generated, and this force is
repulsive (Figure 3.22). Although the origin of these forces is collisions between
segments of the chain (excluded volume effect), the forces can be either attractive
or repulsive depending on the situation. This force is called “topological (geo-
metric) interaction” because this force seems to maintain the initial geometric
configuration of the polymer. Under this concept, an “entanglement” between
network strands topologically inhibits chain motion. Of course, although no
entanglements exist without an excluded volume, the excluded volume effect
and entanglement are identical under this concept.

Returning to a gel network, it can be regarded as a series of ring structures
(Figure 3.23). The previously mentioned concept suggest that the network struc-
ture is maintained by the repulsive force between rings, and infinite contraction
does not occur. Furthermore, even if a heterogeneous distribution of crosslinks
temporarily occurred during gelation, both repulsive and attractive topological
forces are generated, so they cancel each other out, resulting in a homogeneous
structure. When the material is deformed, an attractive force and a repulsive force
becomes out of balance due to the anisotropic distribution of rings, leading to the
stress. Considering the ring as a structural unit of the network solves many of the
problems that arise when the network strand is used as the unit. In recent years,
this model has been extended to large deformation regions, and the nonlinear
behavior of rubber is well studied [16, 17]. Thus, topological interactions are an
interesting concept, and they provide a good example of the potential faults of
classical rubber elastic theory.
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Figure 3.23 A polymer network
consists of many cyclic polymers.

3.7 Sol–Gel Transition

In this chapter, we have reviewed the definition of a polymer gel and the rub-
ber elasticity of polymer gels. Here, we briefly introduce models for theoretically
predicting the sol–gel transition. As introduced in Section 3.2.1, the crosslinking
reaction in a polymer solution forms a three-dimensional network structure, i.e. a
polymer gel. This liquid-to-solid transition is called a sol–gel transition or simply
gelation.

There are two important considerations in gelation. One is the critical point
at which the gel is formed, such as the lowest concentration at which a gel can
form and the lowest crosslinking density. The other is how the physical proper-
ties change approaching the critical point, such as how the viscosity increases
approaching gelation and how the elastic modulus increases after gelation. Mod-
els of gelation predict the critical point and the processes that occur near the crit-
ical point. Conventional models can be roughly divided into two groups: (i) Bethe
approximation, (ii) the percolation model in lattices, and (iii) simulations. In this
section, we briefly explained Bethe approximation and the percolation model.

3.7.1 Gelation Threshold of Bethe Approximation

Here, we focus on predicting the gelation threshold based on Bethe approxi-
mation discussed in Section 3.5.2. Briefly, the model considers Bethe structure
without intramolecular linking. Using Bethe approximation, the critical conver-
sion (pc) necessary for gelation can also be predicted. Here, we again consider
the tetra-functional network. The gelation threshold is equivalent to the point
where we can find an infinite-sized network for the first time. In the system,
there is at least one arm leading to the infinite-sized network. Under these
conditions, Eq. (3.43) should have a solution in the range 0≤ P(F)≤ 1. Given
g(P(F))= pP(F)2 + pP(F)+ p− 1, the condition is represented as follows:

g(0)g(1) = (p − 1)(3p − 1) ≤ 0

p ≥ 1
3

(3.49)
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The gel is predicted to form at p ≥ 1/3, namely, pc = 1/3. This discussion can be
extended to the AA-type reaction of an f -functional polymer, and the results are
as follows:

(P(F) − 1)

(
p ⋅

f∑
n=2

P(F)n−2 − 1

)
= 0 (3.50)

The criteria for the gelation of f -functional polymers are represented as

pc =
1

f − 1
(3.51)

In this way, Bethe approximation is versatile and can also be applied to AB-type
reactions, which are reactions between molecules with different functionalities,
and living polymerizations.

3.7.2 Gelation Threshold from the Percolation Model

The word “percolation” can mean “penetration” and “bleeding out.” In the per-
colation model, the lattice points in a certain lattice space are marked randomly,
and how the marked lattice points are connected is discussed. The growth of con-
nected lattice points (clusters) is similar to that of polymer networks as well as
the structure of oil fields and the flaring of forest fires. Gelation in the percolation
model is defined as the existence of clusters passing through all the principal axes
(percolation, right-hand images in Figure 3.24).

The method of percolation can be roughly divided into two pathways. One is
site percolation, which randomly fills empty lattice spaces. Here, we define the

psite = 0.22(a)

(b)

psite = 0.45 psite = 0.63

Percolation

pbond = 0.24 pbond = 0.38 psite = 0.58

Figure 3.24 Gelation by (a) site percolation (pbond = 1) and (b) bond percolation (psite = 1).
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probability that the site is occupied as psite and the probability that the adjacent
occupied sites are connected as pbond. In the site percolation model, psite is vari-
able, while pbond = 1. In other words, when neighboring sites are occupied, the
sites are definitely connected. The site percolation model is appropriate for the
prediction of the lowest polymer concentration forming a gel .

In the bond percolation model, psite = 1 and pbond is variable; all lattice points
are occupied first, and points are bonded randomly. The bond percolation model
is appropriate for a gelation from a polymer solution with a concentration higher
than the overlapping concentration. Comparing these two models in a certain lat-
tice space, it is generally more difficult for site percolation to percolate throughout
the system compared with bond percolation, and site percolation has a slightly
larger threshold. There is another model, called the site–bond percolation model,
in which both psite and pbond are variables.

Finally, we compare these theoretical predictions and the experimental
results. For a tetra-functional network structure, representing a conventional
polymer gel, Bethe approximation (pc ≈ 0.33) and the bond percolation model
(diamond lattice, pc ≈ 0.39) predict similar values. These predictions were
compared with the experimental results of a gelation from an AB-type reaction
of tetra-functional prepolymers and showed good agreement at concentrations
above the overlap concentration (c*) [18]. Based on this observation, p* is
expected to be constant in the concentration range above c*. On the other hand,
p* gradually increases as the concentration decreases below c*, and gelation was
not observed below c*/6. These data strongly suggest that c* of the prepolymer
is an important factor and greatly affects the gelling process.

Based on the agreement with the experimental results, the predictive models
introduced here seem to have sufficient accuracy. Notably, the models address
the ideal process. Therefore, in principle, it is impossible to form gels below the
threshold predicted by the models. The deviation in the threshold value suggests
the experimental condition deviate from those assumed in the model.

3.8 Heterogeneity of Polymer Gels

At the end of this chapter, we introduce the heterogeneity of polymer gels.
What we want to emphasize here is that 3D polymer networks are inherently
heterogeneous. To understand the essence of this problem, let us imagine synthe-
sizing a unit structure of a tetra-functional network containing four branching
points by the cyclization of a polymer with eight side chains, as shown in
Figure 3.25.

If mutually reactive functional groups are present only at the ends, the correct
(structure shown on right side of Figure 3.25) can be synthesized. However, the
correct structure is rarely synthesized in cases when the concentration of macro-
molecules in the system is high or when each arm has reactive functional groups.
In general, various unit structures (shown in Figure 3.26) can be synthesized.
Therefore, it is practically impossible to synthesize an ideal polymer network, as
shown in Figure 3.5, and thus polymer networks are heterogeneous.
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Cyclization Figure 3.25 Synthesis of the
unit structure of a
tetra-functional network.

Figure 3.26 Structures
formed by the AA-type
reaction of tetra-functional
polymers.

As a next step, we consider a more popular system, namely, preparing a poly-
mer gel by radical copolymerization of a vinyl monomer and a divinyl crosslinker
(Figure 3.27). In this reaction, mainly vinyl monomers undergo polymerization,
and the divinyl crosslinkers are sparsely introduced at random. When both vinyl
groups of a divinyl crosslinker react, the crosslinker becomes a crosslink, and
the series of monomer units between neighboring crosslinks becomes a network
strand. As immediately seen from this process, the molecular weights of net-
work strands have a random and heterogeneous distribution. Loops and entan-
glements can both be formed. The size of these heterogeneous regions are similar
to the sizes of the network strands; these regions are called local inhomogeneities.

In radical copolymerizations, highly branched polymeric clusters form and
grow at the beginning of the reaction. As the reaction progresses further,
the branched clusters grow into nanogel-like structures, and eventually they
combine to form a macroscopic three-dimensional network structure. Therefore,
a dense region is formed by the nanogels, and sparse regions are formed in
regions where the nanogels are connected. This dense-sparse heterogeneity is
considerable, and its size is approximately several tens of nanometers to several
hundred nanometers. This type of heterogeneity is called global heterogeneity,
and it can be confirmed by excessive scattering in light scattering analysis,
small-angle neutron scattering, and so on.

On the other hand, local inhomogeneities cannot be observed directly and can
be observed only as deviations in the physical properties from those predicted by
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Figure 3.27 Heterogeneities in polymer gels are categorized as global or local
heterogeneities.

an applicable model, making them impossible to discuss quantitatively. In recent
years, some methodologies capable of directly observing local heterogeneities
have been developed, and local heterogeneities are slowly being revealed [19, 20].

Column 3: Elastic Deformation and Plastic Deformation

Some materials show degrading mechanical profile in repetitive mechanical
testing. The phenomenon that the mechanical profiles of deformation and
recovery do not coincide with each other is called “hysteresis” (see Figure 3.28).
The origin of hysteresis is energy dissipation. A solid stores energy when strain
is applied. In an ideal elastic material, the stored energy is released as it is
without any energy dissipation (elasticity), and the recovery profile is the same
with the deforming one. The force needed to deform an ideal elastic material
is determined only by “deformation ratio” at the time. An example of an ideal
elastic material is the spring.

If a material shows a hysteresis, the material dissipates energy due to viscoelas-
ticity and/or plastic deformation. We introduce viscosity prior to explaining the
viscoelasticity. A matter exhibiting viscosity is generally a liquid. What deter-
mines the force needed to deform a liquid? If one imagines swimming in the

Energy dissipation

λ λ

σ σ

(a) (b)

Figure 3.28 Mechanical profiles of (a) an elastic body and (b) a viscoelastic body showing
hysteresis.
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pool, the answer is speed. The force for deforming the viscous body is determined
only by the “deformation rate” at the time, and does not relate to how much it is
deformed from the initial state. Thus, even after a large deformation, the force
becomes 0 after a long time; i.e. all applied energy is dissipated.

Polymer gels and polymer liquids/melts often show viscoelasticity, which
includes both elasticity and viscosity. That is, they store energy in a short time
range (elasticity), while the energy is dissipated and the force required for
deformation decreases over time (viscosity). Thus, even during the deformation,
a certain amount of energy is dissipated, resulting in a difference in mechanical
profiles of deformation and recovery (hysteresis). The degree of hysteresis
varies according to the relationship between the deformation rate and the time
required for energy dissipation (relaxation time).

Plastic deformation is a permanent distortion and is observed above a criti-
cal stress (𝜎c). The origin of plastic deformation is often due to the irreversible
structural changes causing energy dissipation (such as destruction of structure).
An amount of energy dissipation of a plastic body is determined only by “degree
of deformation.” Many of the theories introduced in this book deals with ideal
elastic materials and viscoelastic materials in the equilibrium state (after a suf-
ficiently longer time than the relaxation time). When one applies the theories
to the experimental results, one must consider the effect of viscoelasticity and
plastic deformation.
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Swelling and Deswelling
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Polymer gels contain a large number of solvent molecules and can absorb addi-
tional solvent or lose solvent from the as-prepared state. These processes are of
course accompanied by volume changes in the polymer gel, i.e., swelling and
deswelling. For example, a super water-absorbing polymer gel used for diapers
can absorb up to 1000 times its dry weight in water. This fact shows that a poly-
mer gel can hold a large amount of solvent and that there is a limit to how much a
polymer can swell. When a hydrogel is placed in an aqueous environment, such as
in the living body, either swelling or contraction generally occurs to some extent,
and there is a concomitant change in volume. Therefore, it is practically impor-
tant to know to what extent swelling can occur and how the physical properties
change with changes in volume change. In this chapter, we discuss the swelling
of polymer gels, including changes in mechanical properties due to swelling, the
conditions for equilibrium swelling, and the kinetics of swelling.

4.1 Changes in the Elastic Modulus Due
to Swelling/Deswelling

Here, there is a polymer gel with elastic modulus G in the as-prepared state.
When the gel swells to twice its initial volume, how will the elastic modulus
change? If the network is not broken and new bonds do not form upon swelling,
the concentration of network strands is halved. The affine network model suggest
the elastic modulus will be halved. However, experimentally, the elastic modulus
is not halved; it decreases by 20–30%. This discrepancy is caused by the fact that
we did not consider additional effects of the subsequent swelling process. The gel
discussed here is different from a gel formed at half the polymer concentration for
which G can be described by Eq. (3.15). Even if the concentrations are the same,
when there are differences between the as-prepared state and the state after sub-
sequent processes, the gels will have different elastic moduli. Notably, the physical
properties of polymer gels are influenced by the two states, the state of prepara-
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tion and the state of interest. In the following sections, we introduce models for
predicting the changes in the elastic modulus due to swelling/deswelling based
on this concept.

4.1.1 Statistical Model for Networks Consisting of Ideal Chains

According to the phantom network model, the change in total energy under
deformation is as follows:

ΔF =
𝜉0V0kT

2
(𝜆x

2 + 𝜆y
2 + 𝜆z

2 − 3) (4.1)

Here, 𝜉0 is the number density of the cycle rank, and V 0 is the volume of the gel. If
𝜉0 is exchanged for 𝜈0, the equation is equivalent to the predictive equation from
the affine network model (Eq. (3.9)). Here, we consider the process in which a
cubic gel with side lengths of L0(=V 0

1/3) is swollen (or shrunken) Q times to a
given volume and then uniaxially stretched (Figure 4.1).

The entire elongation ratio in the stretching axis, 𝜆x, is given by the following:

𝜆x = 𝛼Q1∕3 (4.2)

Here, 𝛼x = 𝛼 is the elongation ratio in the x direction of the swollen gel. Given
that no volume change occurs during the stretching process (𝛼x𝛼y𝛼z = 1), 𝜆y and
𝜆z can be represented as follows:

𝜆y = 𝜆z = 𝛼
−1∕2Q1∕3 (4.3)

By substituting Eq. (4.1) into this equation, we obtain the following:

ΔF =
𝜉0V0kT

2
{Q2∕3(𝛼2 + 2𝛼−1) − 3} (4.4)

The force f needed for stretching is obtained by differentiating ΔF by the length
of the specimen after stretching, Lx.

f = 𝜕ΔF
𝜕Lx

=
𝜕

[
𝜉0V0kT

2
{Q2∕3(𝛼2 + 2𝛼−1) − 3}

]
𝜕Lx

=
𝜉0V0kT

2
𝜕Q2∕3(𝛼2 + 2𝛼−1)
𝜕(𝛼L0Q1∕3)

=
𝜉0V0kTQ1∕3

L0
(𝛼 − 𝛼−2) (4.5)

Here, Q was treated as constant because during stretching, the swelling degree
(Q) is already set. Furthermore, given that the cross-sectional area after swelling

L0
L0

Q1/3L0

Q1/3L0 αQ1/3L0
α–1/2Q1/3L0

Swelling Stretching

Figure 4.1 Swelling and subsequent stretching of a rectangular gel.
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is L0
2Q2/3, the stress (𝜎) applied to the sample can be written as follows:

𝜎 =
f

L0
2Q2∕3

=
𝜉0kT

2
Q−1∕3 𝜕(𝛼2 + 2𝛼−1)

𝜕𝛼

= 𝜉0kTQ−1∕3(𝛼 − 𝛼−2) (4.6)

Thus, the elastic modulus of the swollen gel is represented by Eq. (4.7):

G = 𝜉0kTQ−1∕3 = G0Q−1∕3 (4.7)

Here, G0 is the elastic modulus before the volume change. The elastic modu-
lus after the volume change is in proportion to Q−1/3 instead of Q. According
to Eq. (4.7), even if the gel swells to twice its original volume, the elastic modulus
is not halved but is reduced by a factor of approximately 2−1/3 (≈0.8).

Let us continue with this expression a little more. Since the volume is doubled,
the cycle rank is certainly halved. Considering that the cycle rank after deforma-
tion is 𝜉0/Q, Eq. (4.7) can be transformed as follows:

G =
𝜉0

Q
(kTQ2∕3) (4.8)

Given that kT is the contribution of an elastic element to the elastic modulus,
it can be considered that the contribution per element is changed by a factor of
Q2/3 after the volume change. When Figure 4.1 is reviewed once again, the partial
chain is uniaxially stretched by a factor of Q1/3 by the swelling. Assuming that
network strands are Gaussian chains, the energy of a network strand changes by
a factor of Q2/3 due to uniaxial stretching by a factor of Q1/3. The change in the
elastic modulus of Q1/3 times can be obtained by considering that the contribu-
tion of each network strand changes by a factor of Q2/3, and the concentration of
the network strands is changed by a factor of Q−1. Thus, if we can imagine both
scaling rules, we can predict Eq. (4.7) by scaling. Using the polymer volume frac-
tions before swelling (𝜙0) and after (𝜙m) and taking into account that 𝜉0 ∼ 𝜙0,
Q ∼ 𝜙0/𝜙m, Eq. (4.7) is transformed as follows:

G ∼ 𝜉0Q−1∕3 ∼
𝜙0

N

(
𝜙0

𝜙m

)−1∕3

∼ N−1
𝜙0

2∕3
𝜙m

1∕3 (4.9)

It has been experimentally confirmed that Eqs. (4.7) and (4.9) are applicable to
various systems. However, as for the power law of approximately 𝜙m, powers
more than 1/3 and close to 0.5 have been observed. In Section 4.1.2, we introduce
a scaling approach that can explain the powers more than 1/3.

4.1.2 Scaling for Networks Consisting of Nonideal Chains

Panyukov proposed a scaling of the elastic energy for gels in swelling/deswelling
as shown as follows [1]:

Fel

kT
∼ G

kT
∼
𝜙m

N

(
𝜆R0

Rref

)2

(4.10)

Here, 𝜆 is the uniaxial elongation ratio due to the volume change, R0 is the
end-to-end distance of a network strand in the state of preparation, and Rref is
the reference length. Given that 𝜆 is proportional to the cube root of Q, and
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Figure 4.2 Deformation of a network and a chain during a change in concentration.

𝜙/N (∼𝜉0/Q) is proportional to the number density of network strands after
swelling/deswelling, Eq. (4.10) is almost the same shape as Eq. (4.8). The only
difference is Rref in the denominator. In Eq. (4.8), the equilibrium end-to-end dis-
tance of an ideal chain R0 is implicitly adapted as the reference (Rref); substituting
Rref = R0 into Eq. (4.10) affords Eq. (4.9).

Fel

kT
∼ G

kT
∼
𝜙m

N

(
𝜆R0

R0

)2

∼
𝜙m

N

(
𝜙0

𝜙m

)2∕3

∼ N−1
𝜙0

2∕3
𝜙m

1∕3 (4.11)

Notably here, 𝜆 ∼ (𝜙0/𝜙m)1/3. Thus, when we assume Rref = R0, Eq. (4.9) is not
dependent on the characteristics of the polymer chain, which cannot explain
some of the experimental results.

To explain these experimental results, Obukhov and Colby proposed a model
in which Rref is the equilibrium end-to-end distance of a polymer chain with a
degree of polymerization N that exists in a solution with a polymer volume frac-
tion of 𝜙m (Figure 4.2) [2]. By combining this concept with that in Eq. (4.10), nine
different scaling relationships depending on polymer concentration in the states
of preparation and interest can be predicted. There are three major concentration
regions in the states of preparation and interest: (i) a dilute region, (ii) a semidi-
lute region, and (iii) a concentrated region. Although it may seem complicated,
the concept itself is simple. Let us learn from the fundamental idea.

In the state in which they were prepared, polymers in the solution connect
with each other to form a network. The model assumes that the end-to-end dis-
tance of the polymer chain is not influenced by crosslinking and remains constant
(Figure 4.2, left). Thus, R0 is assumed to obey the expressions for the end-to-end
distance of a polymer chain in solution discussed in Section 2.2.
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R = aN𝜈 (Dilute ∶ 𝜙 < 𝜙∗) (4.12)

R = aN𝜈

(
𝜙

𝜙∗

)(2𝜈−1)∕2(1−3𝜈)

(Semidilute ∶ 𝜙∗
< 𝜙 < 𝜙

∗∗) (4.13)

R = aN1∕2 (Concentrated∶ 𝜙∗∗
< 𝜙) (4.14)

Next, during the process of swelling/shrinking, it is assumed that the network
strands are deformed in an affine manner with a change in volume (Q); polymer
chains are deformed by 𝜆 = Q1/3 toward an axis, and their end-to-end distances
become 𝜆R0. These results are the implication of the numerator in parenthesis in
Eq. (4.10).

On the other hand, as mentioned earlier, Rref is the equilibrium end-to-end dis-
tance of a polymer chain with a degree of polymerization N in a solution with a
polymer volume fraction of𝜙m (Figure 4.2). In other words, Rref is the most stable
end-to-end distance of a network strand at 𝜙m, excluding the effect of crosslink-
ing. As a result, we also consider Rref to follow Eqs. (4.12)–(4.14) in the same
manner as R0, and this is the basic framework of the Obukhov–Colby model.
When we apply an equation to each set of conditions, we can predict the scaling
relationship under each set of conditions.

Let us turn to an example: the case in which a gel is formed in a semidilute
solution of polymer and swollen in the range of a semidilute region. Here, we
assume real chains (𝜈 = 3/5) for simplicity, i.e. R0 and Rref can be written as follows:

R0 = aN3∕5
(
𝜙0

𝜙∗

)−1∕8

(4.15)

Rref = aN3∕5
(
𝜙m

𝜙∗

)−1∕8

(4.16)

By substituting these equations into Eq. (4.10), we obtain the following:

G
kT

∼
𝜙m

N

(
𝜆R0

Rref

)2

∼
𝜙m

N

⎛⎜⎜⎜⎝
𝜆aN3∕5

(
𝜙0

𝜙∗

)−1∕8

aN3∕5
(
𝜙m

𝜙∗

)−1∕8

⎞⎟⎟⎟⎠
2

∼
𝜙m

N

(
𝜙0

𝜙m

)2∕3(
𝜙0

𝜙m

)−1∕4

∼ N−1
𝜙m

7∕12
𝜙0

5∕12 (4.17)

This equation predicts that the elastic modulus is proportional to 𝜙m
7/12 and that

the power is approximately twice as large as that of Eq. (4.9). Next, let us consider
the elastic modulus when the network is formed in the semidilute region and
further swollen to the dilute region.

G
kT

∼
𝜙m

N

(
𝜆R0

Rref

)2

∼
𝜙m

N

⎛⎜⎜⎜⎝
𝜆aN3∕5

(
𝜙0

𝜙∗

)−1∕8

aN3∕5

⎞⎟⎟⎟⎠
2

∼
𝜙m

N

(
𝜙0

𝜙m

)2∕3(
𝜙0

𝜙∗

)−1∕4

∼ N−1
𝜙m

1∕3
𝜙0

5∕12
𝜙
∗1∕4 (4.18)
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In this process, the elastic modulus is expected to be proportional to 𝜙m
1/3.

When comparing Eqs. (4.17) and (4.18), the 𝜙m-dependence of the elastic
modulus changes from 7/12 to 1/3. As a result, when a gel formed in a semidilute
region is swollen to a dilute region, the elastic modulus is expected to show
crossover at approximately 𝜙*. This crossover was experimentally observed; the
power law changed in the vicinity of 𝜙* for the prepolymer [3]. Notably, the
power law did not depend on whether the gel was swollen or shrunk. Essentially,
the sign of the volume change does not matter; instead, what matters is if the
polymer volume fraction is higher or lower than 𝜙*.

Finally, we note the limitation of this model. Equation (4.10), which is the cor-
nerstone of this model, is correct for networks consisting of network strands
following the Gaussian statistics. In the strictest sense, Hooke’s law is not always
correct for network strands that do not obey Gaussian statics. Let us restate here
that it is difficult to describe the physical properties of general polymer gels even
with scaling. In addition, according to Eq. (4.10), the end-to-end distance con-
tracts in proportion to 𝜙m

1/3. When the extent of contraction is too large, the
end-to-end distance becomes too small compared with aN1/2. However, such a
situation is, of course, not observed in reality, and the result predicted by the
scaling is not consistent with the experimental results. For this case, the more
complicated situation introduced in the Section 4.1.3 must be considered.

Determining if the assumption that the prepolymers are captured into a
polymer network while maintaining the end-to-end distance that they had in
free solution always holds is worth considering. When we see processes forming
gels from prepolymers, the previously mentioned assumption does not seem
self-evident. At low concentrations, below 𝜙*, there is a possibility that the pre-
polymers are captured with a slightly stretched state simply by chance, and vice
versa at high concentrations, above 𝜙*. On the other hand, when making a gel
from monomers and crosslinkers, the polymer chains between the crosslinking
points will likely form a network while maintaining R0. Although we must pay
attention to these limitations, according to the good agreement between the
theoretical outcomes and experimental results, the concept itself that the elastic
modulus of a polymer gel is strongly influenced by the two states, the states in
which it was prepared and the state of interest, seems correct to some extent.

4.1.3 Scaling for Highly Deswollen Networks

The model introduced in the Section 4.1.2 can be applied to a wide concentration
range, including the dilute, semidilute, and concentrated regions. However, as
mentioned earlier, the model cannot reproduce the experimental results of
highly deswollen polymer gels. Indeed, the experimental results in which the gel
was formed in the dilute region and deswollen to the concentrated region were
clearly different from the prediction of Eq. (4.10) [4–7]. This inconsistency is
attributed to the fact that the degree of deformation is too large to be modeled
with the same picture.

In the discussion earlier, the most stable end-to-end distance (Rref) of a
network strand contracts by 𝜙

−1/8 in the semidilute region and becomes a
constant of aN1/2 at concentrations above 𝜙**. On the other hand, the actual
end-to-end distance of the network strand (the distance between the crosslinks)



4.1 Changes in the Elastic Modulus Due to Swelling/Deswelling 83

affinely shrinks (∼𝜙−1/3). Therefore, these two lengths deviate largely with strong
deswelling above 𝜙**, and the end-to-end distance becomes considerably smaller
than aN1/2. Notably, decreasing the end-to-end distance does not significantly
influence the conformation of the ideal chain. According to the discussion
in Chapter 1, the energy needed to stretch the ideal chain to length R0 is
approximately kT , which does not strongly influence the conformation or the
distribution of segments. Of course, this scheme is only applicable for moderate
deswelling, and the distribution is influenced in the case of strong deswelling.
Although the deswelling of a gel does not substantially change the conformation
of the network segments, it does increase the density of crosslinks. Thus, a space
occupied by a network strand is invaded by other crosslinks and other network
strands during deswelling. As a result, network strands are expected to become
substantially entangled with each other and form complicated structures.
Notably, this interpenetrated structure is not trapped because it is solved by
swelling. In addition, this interpenetrated structure can form in any gel if it is
strongly deswollen. This type of interpenetrated structure is called a “supercoiled
structure” (Figure 4.3).

Let us take a closer look at the supercoiled network in Figure 4.3. Two kinds
of entanglements exist: trapped entanglements formed during gelation and
pseudo-entanglements formed during deswelling. Related to these entangle-
ments, the network strands can be virtually divided into two parts. One is the
minimal path connecting the crosslinks on both ends; this path cannot pass
through the preformed trapped entanglements. The other part is the subpart
that penetrates into other crosslinks, which can be solved by pulling the strand.
Rubinstein approached this problem based on this virtual division.

As is evident from Figure 4.3, the end-to-end distance of the supercoiled net-
work strand is the same as that of the minimal path (primitive path). Here, assum-
ing that there is no correlation between segments following the minimal path, the
end-to-end distance of this path (Rbb) follows Gaussian statistics and Rbb can be
predicted as follows:

Rbb ≈ aNbb
1∕2 (4.19)

Figure 4.3 Schematic picture of a strongly
deswollen network.

Nbb
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As the minimal chain has the same number density as the network strand, the
virtual degree of polymerization (Nbb) and the volume fraction (𝜙bb) of the min-
imal chain are written as follows:

𝜙bb

Nbb
=
𝜙m

N
(4.20)

Here, we assume that the supercoil occurs above the concentration at which
the contribution of the entanglements to the elasticity dominates in the
uncrosslinked polymer solution with polymerization degree Nbb. The degree
of polymerization of a subchain between neighboring entanglements (Ne) in a
polymer solution (𝜙e) is represented as follows [8]:

𝜙e =
( Ne

Ne,0

)− 1
𝛼−1

(4.21)

Here, Ne,0 is the degree of polymerization of a subchain between neighboring
entanglements in the polymer melt. This equation relates the concentration
at which the contribution of entanglement becomes considerable (𝜙e) and the
molecular weight between neighboring entanglements (Ne). 𝛼 is the exponent
in the power law relationship between the rubbery plateau modulus of the
entangled polymer solution and the polymer volume fraction (𝛼 = 7/3 for a 𝜃
solvent and 𝛼 = 9/4 for a good solvent). According to this equation, one can
estimate 𝜙e for a polymer chain with a degree of polymerization of N1 by
substituting N1 into Ne. Conversely, one can estimate Ne for a polymer solution
with a volume fraction of 𝜙1. Applying Eq. (4.21) to the primitive-path chain, the
following equation relating Nbb and 𝜙bb is obtained:

𝜙bb =
(Nbb

Ne

)− 1
𝛼−1

(4.22)

We assume the use of the 𝜃 solvent in further discussions for simplicity. Accord-
ing to Eqs. (4.20) and (4.22), we obtain the following:

Nbb ≅ Ne
3∕7

(
𝜙m

N

)−4∕7

(4.23)

Substitution of Eq. (4.23) into Eq. (4.19) gives Eq. (4.24):

Rbb ≅ aNbb
1∕2 ≅ aNe

3∕14
(
𝜙m

N

)−2∕7

(4.24)

Here, we define 𝜙e𝜃 as 𝜙e in 𝜃 solvent, use Eq. (4.21) for Ne, and substitute these
variables into Eq. (4.23).

Rbb ≅ aN1∕2
(
𝜙m

𝜙e
𝜃

)−2∕7

(4.25)

This equation can be used to determine Rbb, which is the most stable end-to-end
distance of the supercoiled polymer network structure (Rref).

Rref ≅ aN1∕2
(
𝜙m

𝜙e
𝜃

)−2∕7

(4.26)
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Given that R = aN1/2 in a conventional concentrated polymer solution, the most
stable structure of the supercoiled network strand is (𝜙m/𝜙e

𝜃)−2/7-times smaller
than that of the polymer chain in a concentrated solution. By substituting
Eq. (4.26) into Eq. (4.10), the elastic modulus of a supercoiled network is
obtained.

G
kT

≅ 𝜙

Nb3

(
𝜙m

𝜙0

)−2∕3(
𝜙m

𝜙e
𝜃

)4∕7

∼ 𝜙m
19∕21 (4.27)

This equation shows that the elastic modulus is proportional to 𝜙m
19/21. Several

experiments have roughly shown G∼𝜙m
1, supporting the validity of this model

[7]. Notably, when one simply substitutes the prediction in a concentrated region
(Rref = aN1/2) to Eq. (4.10), one obtains G∼𝜙m

1/3, which is completely different
from experimental results. These results strongly suggest that when a network is
formed in a diluted state and then strongly deswollen, a complicated structure,
as discussed here, is formed.

4.2 Equilibrium Swelling

In the Section 4.1, the changes in the elastic modulus due to swelling/deswelling
were discussed. Generally, when a gel in its as-prepared state is immersed in a
good solvent, the gel swells because the polymer constituting the gel is miscible
in the solvent and osmotic pressure is generated. If no polymer exists in the solu-
tion outside the gel, osmotic pressure occurs due to the difference in the polymer
concentrations inside and outside the gel. To reduce the difference in osmotic
pressure, the polymers want to elute into the outer solution; however, the poly-
mers cannot freely elute because they are crosslinked into a network structure.
As a result, instead of eluting out of the gel, the gel swells by drawing in the sol-
vent. Swelling also decreases the elastic pressure (corresponding to the elastic
modulus of the swollen gel). Although both pressures decrease with swelling, the
decrease in osmotic pressure is larger than that of elastic pressure. Thus, after a
certain degree of swelling, these pressures become balanced, and an equilibrium
swollen state is achieved. Because the osmotic pressure is typically greater than
the elastic pressure in the initial state, the gel swells. This idea has been proposed
by Flory, and the conditions for equilibrium swelling can be written as follows [9]:(

𝜕Fel

𝜕nB

)
nA

+
(
𝜕Fmix

𝜕nB

)
nA

= 0 (4.28)

Here, Fel and Fmix are the free energies of elasticity and mixing, respectively, and
nA and nB are the number of moles of the polymer and the solvent, respectively.
The criterion for equilibrium swelling is that the change in total free energy is
0 during swelling/deswelling; in other words, the change in total free energy is
0 and the number of macromolecules in the gel does not change, and only the
number of solvent molecules changes.
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4.2.1 Scaling Prediction of the Equilibrium Swelling

Here, we introduce a scaling prediction for the equilibrium swelling. We utilize
Eq. (4.10) to determine Fel and Eq. (2.62) to determine Fmix. In scaling theory,
because both Fel and Fmix are power law functions of 𝜙, differentiation with
respect to 𝜙 only divides each term by 𝜙 in the scaling relationship. Thus, we
need to consider the following equation:

𝜙e

N

(
𝜆R0

Rref

)2

𝜙e
∼
𝜙e

3𝜈
3𝜈−1

𝜙e
(4.29)

Here,𝜙e is the polymer volume fraction in the equilibrium swollen state. What we
want to know is the elastic modulus (Ge) in the equilibrium swelling state, which
varies depending on the concentration range of the as-prepared and equilibrium
swollen states, as discussed in the Section 4.1.2. As an example, let us consider
a case in which a gel is made in a semidilute region (𝜙*<𝜙0) and swollen to a
dilute region. By substituting Eqs. (4.13) and (4.12) for R0 and Rref, respectively,
the following scalings are obtained for 𝜙e and Ge:

𝜙e ∼ G0
9𝜈−3
6𝜈+1𝜙0

1−3𝜈
6𝜈+1 (4.30)

Ge ∼ G0
9𝜈

6𝜈+1𝜙0
−3𝜈

6𝜈+1 (4.31)

Based on Eqs. (4.30) and (4.31), a relationship between 𝜙e and Ge is obtained:

Ge ∼ 𝜙e
3𝜈

3𝜈−1 (4.32)

Notably, the right side of Eq. (4.32) is equivalent to the osmotic pressure (Eq.
(2.63)). Given that the left side of Eq. (4.29) was originally Ge/𝜙e, Eq. (4.32)
is directly obtained from Eq. (4.29). In other words, applying the scaling for
a semidilute regime to the osmotic pressure of gels gives Eq. (4.29) a priori.
Although the agreement between the experimental results and those predicted
by Eq. (4.29) is often used as evidence supporting the validity of the c* theorem
proposed by de Gennes, the agreement is not correct. Instead, this agreement
only suggests that the osmotic pressure of the gel is described by that of the
semidilute solution.

This equation is practically important because we can estimate the important
parameter 𝜈 through the following process. One can prepare a series of gels with
different initial concentrations or different elastic moduli and measure their elas-
tic moduli in their equilibrium swelling states. By plotting 𝜙e and Ge, one can
estimate 𝜈 based on Eq. (4.32). Figure 4.4 shows the results of Tetra-PEG gels
with different molecular weights and initial concentrations of network strands
[3]. The data from the gels prepared under various conditions are on a master
curve. 𝜈 was estimated from the power to be 0.56, which was close to that of a
real chain. The estimated 𝜈 explained the other physical properties well, and sim-
ilar results were obtained in other systems [3, 10–13], supporting the validity and
usefulness of this methodology.
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Figure 4.4 Scaling relationship
between the elastic modulus (Es)
and polymer volume fraction in the
equilibrium swollen state (𝜙s).
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Figure 4.5 Two pressures were generated on an electrically
neutral gel in a solvent: osmotic pressure (𝛱mix) and elastic
pressure (𝛱el).
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4.2.2 Statistical Mechanics of Equilibrium Swelling

Here, we consider the pressure applied to the surface of a hydrogel. In the
equilibrium swollen state, these pressures should be balanced with each other.
Considering an electrically neutral gel in an appropriate solvent, there are two
pressures: the osmotic pressure (𝛱mix) resulting from the difference in the
polymer concentrations inside and outside of the gel and the elastic pressure
due to the deformation of the polymer network (𝛱el). Note that 𝛱mix and 𝛱el
generally have opposite signs, as shown in Figure 4.5. Therefore, the conditions
for equilibrium swelling are expressed as follows:

𝛱 = 𝛱mix +𝛱el = 0 (4.33)

According to Chapter 2, 𝛱mix is given using ΔFmix as follows:

𝛱mix = −
NA

V1

(
𝜕ΔFmix

𝜕nB

)
nA

(4.34)

Here, NA is Avogadro’s constant, V 1 is the molar volume of the solvent, and thus
NA/V 1 is the number of solvent molecules in a unit volume. ΔFmix of the gel has
the following form:

ΔFmix = nkT[(1 − 𝜙) ln(1 − 𝜙) + 𝜒𝜙(1 − 𝜙)] (4.35)

The difference between Eq. (4.35) and that of the polymer solution (Eq. (2.42)) is
the absence of the term𝜙/N , which is due to the extremely large N of polymer gels
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(N ≈∞). Solving Eq. (4.34) through a process similar to that used for Eq. (2.42),
𝛱mix can be represented as follows:

𝛱mix = −
NAkT

V1
(𝜙 + ln(1 − 𝜙) + 𝜒𝜙2) (4.36)

Next, we consider 𝛱el to be defined as follows:

𝛱el = −
NA

V1

(
𝜕ΔFel

𝜕nB

)
nA

(4.37)

This equation is similar to that of 𝛱mix (Eq. (4.34)) and represents the change
in the elastic energy when the number of solvent molecules increases while the
number of network strands in the gel remains constant. Assuming that the net-
work strands are ideal chains and follow the affine network model, ΔFel is repre-
sented as the following:

ΔFel =
𝜈0V0kT

2
(𝜆x

2 + 𝜆y
2 + 𝜆z

2 − 3 − ln(𝜆x𝜆y𝜆z)) (4.38)

Compared with Eq. (3.9), one notices that the term ln(𝜆x𝜆y𝜆z) has appeared. The
origin of this term is the change in entropy when arranging network strands in
the network, which was proposed by Flory [9]. Notably, this term does not influ-
ence the discussion in Chapter 3 because we only consider the isovolumetric
transformation (𝜆x𝜆y𝜆z = 1), i.e. ln(𝜆x𝜆y𝜆z) = 0. Notably, in the phantom network
model, the term ln(𝜆x𝜆y𝜆z) does not exist because the crosslinks fluctuate, and
arranging the network strands is apparently unnecessary. Given that the swelling
is isotropic, the following condition is applied to Eq. (4.38):

𝜆x = 𝜆y = 𝜆z = 𝜆 = Q1∕3 =
(

V
V0

)1∕3

(4.39)

Here, V 0 is the initial volume of the gel.

ΔFel =
3𝜈0V0kT

2
(𝜆2 − 1 − ln 𝜆) (4.40)

The differentiation affords the following:(
𝜕ΔFel

𝜕nB

)
nA

=
(
𝜕ΔFel

𝜕𝜆

)
nA

(
𝜕𝜆

𝜕nB

)
nA

=
3𝜈0V0kT

2
(2𝜆 − 𝜆−1)

(
𝜕𝜆

𝜕nB

)
nA

(4.41)

To calculate 𝜕𝜆/𝜕nB, the following relationship is used:

𝜆
3 = V

V0
=

V0 + nBV1

V0
(4.42)

By differentiating Eq. (4.42) by nB, one obtains the following:

3𝜆2
(
𝜕𝜆

𝜕nB

)
nA

=
V1

V0
(4.43)

Substituting this equation into Eq. (4.41), the following equation is obtained:(
𝜕ΔFel

𝜕nB

)
nA

= 𝜈0V1kT
(
𝜆
−1 − 1

2
𝜆
−3
)

(4.44)
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Thus, 𝛱el is represented by Eq. (4.45):

𝛱el = 𝜈0NAkT
(1

2
𝜆
−3 − 𝜆−1

)
= 𝜈0NAkT

(
1
2

(
𝜙

𝜙0

)
−
(
𝜙

𝜙0

)1∕3
)

(4.45)

Here, the following relationship was used:

𝜆 =
(

V
V0

)1∕3

=
(
𝜙0

𝜙

)1∕3

(4.46)

Finally, by combining Eqs. (4.33), (4.36) and (4.45) with 𝜙= 𝜙e, the conditions for
equilibrium swelling can be represented as follows:

𝛱 = −
NAkT

V1
(𝜙e + ln(1 − 𝜙e) + 𝜒𝜙e

2)

+ 𝜈0NAkT

(
1
2

(
𝜙e

𝜙0

)
−
(
𝜙e

𝜙0

)1∕3
)

= 0

𝜈0 =
𝜙e + ln(1 − 𝜙e) + 𝜒𝜙e

2

V1

(
1
2

(
𝜙e

𝜙0

)
−
(
𝜙e

𝜙0

)1∕3
) (4.47)

Based on the phantom network model, we obtain the following:

𝜉0 = −
𝜙e + ln(1 − 𝜙e) + 𝜒𝜙e

2

V1

(
𝜙e

𝜙0

)1∕3 (4.48)

Note that the second term in the denominator of Eq. (4.47) does not exist in
Eq. (4.48), which reflects the absence of an entropic term due to the arrangement
of the network strands (ln(𝜆x𝜆y𝜆z)). Although the Flory–Rehner model is popular,
it is difficult to intuitively understand from the formula. To understand this model
visually, 𝛱mix and −𝛱el are plotted against Q in Figure 4.6. The intersections in
this graph are points where 𝛱mix + (−𝛱el) = 0, indicating equilibrium swelling
states. Here, we show two 𝛱mix values with different 𝜒 and four 𝛱el values with
different elastic moduli based on different models. For each combination of𝛱mix
and −𝛱el, we only find a single intersection. These results indicate that according
to Eq. (4.47), only one unique equilibrium swelling state can be achieved from
these initial conditions. As the values of 𝜒 or G0 decrease, the intersection moves
to larger values of Q, suggesting large swelling. This result is consistent with the
intuitive understanding that soft gels and gels in good solvents swell substantially.
It is also interesting that𝛱el does not increase but decreases with swelling (Q> 1)
because the stretching of the network strands due to swelling (positive effect) and
the reduction of network strand density due to swelling (negative effect) cancel
each other out. On the other hand, 𝛱mix decreases monotonically with decreas-
ing 𝜙, resulting in a balance between 𝛱mix and −𝛱el. Notably, although 𝛱el
behaves quite differently in the affine and phantom network models, the differ-
ence does not significantly influence the equilibrium swelling ratio (Qe). As these
models may be oversimplified, it is not essential to discuss the validity of each
model here. A qualitative discussion is possible in the region where Qe is small
because the values of𝛱el predicted by the two models are substantially different.
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Figure 4.6 𝛱mix and −𝛱el as a function of Q (𝜙0 = 0.1, V1 = 1.8× 10−5 m3/mol). Each
crosspoint indicates equilibrium conditions.

As described earlier, there are some pitfalls in the practical operation of Eq.
(4.47). This equation has reproduced various experimental results to some extent.
On the other hand, the parameter 𝜒 , which should be determined for each com-
bination of polymer and solvent, depends on the degree of polymerization of the
network strands, the number of branches, and even the initial polymer concen-
tration [14–17]. Equation (4.47) is derived under the assumption that the free
energy and elastic energy of mixing are represented by Eqs. (4.35) and (4.40),
respectively. Therefore, all the deviations of the real system from the assumption
are considered in parameter 𝜒 . Therefore, it is not essential to estimate the num-
ber density of network strands from𝜒 and Qe based on Eq. (4.47); it is more direct
and accurate to measure the elastic modulus by mechanical measurements and
estimate the number density of the network strands. One example of a promising
use of the Flory–Rehner equation is to estimate a change in an elastic modulus
over time from the degree of swelling. We can estimate 𝜒 from the initial values
of G and Qe and set 𝜒 as a fixed parameter during the swelling caused by degra-
dation [18, 19]. We discuss the application of the Flory–Rehner model to predict
the degradation behavior in Chapters 4 and 16.

Notably, Eqs. (4.47) or (4.48) cannot reproduce the volume phase transition;
there is always only one intersection of 𝛱mix and −𝛱el (Figure 4.6), and the
coexistence of the two phases is not reproduced. To reproduce the volume
phase transition, we need to introduce a concentration-dependent 𝜒 term or
the osmotic pressure of fixed ions. Finally, we compare Eq. (4.47) with the
conventional Flory–Rehner model written in a general polymers textbook.

𝜈dry =
𝜙e + ln(1 − 𝜙e) + 𝜒𝜙e

2

V1

(
1
2
𝜙e − 𝜙e

1∕3
) (4.49)

The major differences are that the left side is clearly from the dry material and
that 𝜙0 has disappeared from the denominator. This difference is caused by the
conditions considered by Eqs. (4.47) and (4.49), i.e. whether the initial state is a
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melt (𝜙0 = 1) or contains a solvent (𝜙0 < 1). The reason for the subscript “dry” is
that the conventional expression focuses only on elastomers, which do not con-
tain solvent. The difference in the denominator is simply caused by the difference
in the initial conditions. Because the denominator expresses the change in elastic
energy due to deformation, the displacement by swelling (Qe = 𝜙0/𝜙e) is a key
term. Indeed, by setting 𝜙0 = 1, Eq. (4.47) is reduced to Eq. (4.49); thus, Eq. (4.49)
is simply a special case of Eq. (4.47) (𝜙0 = 1).

4.3 Volume Phase Transition

4.3.1 Electrically Neutral Gels

Some kinds of polymer gels undergo discontinuous volume changes when the sol-
vent quality is slightly changed. This phenomenon was first observed by Tanaka
and was named the volume phase transition phenomenon [20]. For example,
during heating, hydrogels made from poly(N-isopropylacrylamide) (PNIPAAm)
shrink discontinuously at approximately 32 ∘C (Figure 4.7). How can we predict
this volume phase transition phenomenon?
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Figure 4.7 Temperature-dependence of volume of a PNIPAAm hydrogel [21].
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In Section 4.2, we learned that polymer gels swell in good solvents and shrink
in poor solvents. Figure 4.8a shows the dependency of𝛱 (=𝛱mix +𝛱el) when 𝜒
changes (given by Eq. (4.47)). Unlike Section 4.2, since 𝛱 is plotted directly, the
intersection with 𝛱 = 0 indicates the equilibrium swelling (Qe). As 𝜒 increases,
Qe gradually decreases, and when Qe < 1 in a region where 𝜒 is sufficiently high,
the gel shrinks. By solving Eq. (4.47) for 𝜒 , we can quantitatively predict the effect
of 𝜒 on Qe. Figure 4.8b shows the relationships of Qe and 𝜒 when G and 𝜙0 are
changed. No discontinuous change, as shown in Figure 4.7, is reproduced, and Qe
is always continuous with changing 𝜒 . That is, the changes predicted by Eq. (4.47)
are continuous, and the discontinuous phase transition cannot be reproduced.

The simplest way to reproduce the volume phase transition is to introduce the
𝜙-dependence of 𝜒 as follows:

𝜒 = 𝜒1(T) + 𝜒2𝜙 (4.50)

This type of dependence is not unrealistic and has been confirmed in some poly-
mers, including PNIPAAm [22]. The𝜙-dependent𝜒 completely differentiates the
Q-dependence of𝛱 , which has both a local minimum and maximum (Figure 4.9).

As shown in Figure 4.9, as 𝜒1 increases, the number of points where 𝛱 = 0
changes from 1 (𝜒1 = 0.46) to 3 (𝜒1 = 0.475) to 1 (𝜒1 = 0.49) again. When the
number of points where 𝛱 = 0 is 1, only one stable state exists. On the other
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hand, when there are three such points, three sets of equilibrium conditions seem
to exist. However, not all three sets of conditions are stable.

The bulk modulus (K ), which is defined in Eq. (4.51), indicates the stability of
the system:

K = 𝜙

(
𝜕𝛱

𝜕𝜙

)
T

(4.51)

K indicates the pressure needed to change the volume of the gel by squeezing out
the solvent. When K < 0, the gel spontaneously shrinks and is not stable. Thus, the
condition K > 0 must be met for the material to exist as a solid. To investigate the
Q-dependence of K , we first calculate the following partial differential:

𝜕Q
𝜕𝜙

=
𝜕

(
𝜙0

𝜙

)
𝜕𝜙

= −𝜙0𝜙
−2 (4.52)

Substituting Eq. (4.52) to Eq. (4.51) gives the following:

K = 𝜙

(
𝜕𝛱

𝜕𝜙

)
T
= 𝜙

(
𝜕𝛱

𝜕Q

)
T

(
𝜕Q
𝜕𝜙

)
T
= −𝜙0𝜙

−1
(
𝜕𝛱

𝜕Q

)
T

(4.53)

Given that𝜙0𝜙> 0, the region where the slope of the𝛱–Q relationship is positive
is unstable (see Figure 4.9). Thus, only the two points on the end points are stable,
and the middle region is unstable. In the unstable region, the gel is not stable, and
phase separation spontaneously occurs (spinodal decomposition).

Figure 4.10 shows the dependence of the equilibrium swelling ratio (Qe) on
𝜒1. The solid line is obtained by substituting Eq. (4.50) into Eq. (4.47), and the
spinodal region is obtained from the condition 𝜕𝛱/𝜕𝜙 < 0. As a result, decreas-
ing the solvent quality induces a discontinuous volume change at approximately
𝜒1 = 0.48, while increasing the solvent quality induces a discontinuous volume
changes at approximately 𝜒1 = 0.46, which shows hysteresis behavior. We can
observe a slight hysteresis in the case of the PNIPAAm hydrogel shown in
Figure 4.7. Because the solvent quality decreases with increasing temperature in
many systems, the Qe–T graph is similar to the graph shown in Figure 4.10 [21].

Figure 4.10 𝜒1-Dependence of the
equilibrium swelling ratio (Qe).
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4.3.2 Electrically Charged Gels

Although we discussed the volume phase transition of neutral gels in
Section 4.3.1, few neutral gels show volume phase transitions. On the other
hand, volume phase transitions are common in electrically charged gels. Indeed,
volume phase transitions were first observed in a partially hydrolyzed acrylamide
gel [20]. When the density of the fixed charge is relatively low, the electrostatic
repulsive force between the fixed charges is negligible, and the osmotic pressure
based on the Donnan effect is dominant. By considering this effect, the volume
phase transition can be theoretically predicted, even if 𝜒 is not dependent on 𝜙.

When the gel has a fixed charge, the same amount of oppositely charged coun-
terions penetrate into the gel to maintain the electrical neutrality of the gel phase.
As a result, the ion concentration in the gel is greater than that of the external
solution by the concentration of fixed charges. This effect is called the Donnan
effect. Assuming that there are f fixed charges per network strand, the osmotic
pressure derived from the counterions (𝛱 ion) is by the following:

𝛱ion = 𝜈0
𝜙

𝜙0
fkT (4.54)

Thus, the total pressure of charged gels is given by Eq. (4.55):

𝛱 = 𝛱mix +𝛱el +𝛱ion

= kT

[
− 1

V1
(𝜙+ ln(1−𝜙)+𝜒𝜙2)+𝜈0

{(
f + 1

2

)(
𝜙

𝜙0

)
−
(
𝜙

𝜙0

)1∕3
}]

(4.55)

This pressure value includes all the pressures generated in the polymer gel and is
called the equation of state for polymer gels [23].

Figure 4.11 shows the contribution of each pressure as a function of 𝜙 (other
parameters are set in the range of conventional gels). 𝛱el has a relatively smaller
influence on the total pressure than do 𝛱mix and 𝛱 ion. Notably, the impact of
𝛱 ion is quite large even if only a few ions are present per network strand (f = 5,
10 in Figure 4.11).

Figure 4.12 shows the conditions where the volume phase transition occurs.
The osmotic pressure only greatly increases when several fixed charges are added
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Figure 4.11 𝜙-Dependence of𝛱mix,
𝛱 ion, and𝛱el (𝜒 = 0.5, 𝜙0 = 0.05, and
G = 10 000 Pa).
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Figure 4.12 Q-Dependence of𝛱
under conditions where a phase
separation occurs (f = 10, 𝜙0 = 0.05,
𝜒 = 0.65, and G = 10 000 Pa).
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Figure 4.13 𝜒-Dependence of Qe for
an electrically charged gel (𝜙0 = 0.1
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per network strand, and this generates three apparent stable points (𝛱 = 0).
Similar to the case of a neutral gel, the intersection in the middle is unstable,
and the volume phase transition occurs between the stable points at each end.
Figure 4.13 shows the volume phase transition behavior of a charged gel (𝜙0 = 0.1
and f = 3). The volume of the swollen phase is considerably larger than that
in the case of a neutral gel, suggesting that the osmotic pressure generated
by the counterion concentration is large. Again, note that this large swelling
is not caused by repulsion between charges fixed in the network but by the
effect of the counterion. Due to their high swellability, charged gels have been
used practically as water-absorbing materials for disposable diapers and water
retaining agents for soils.

4.4 Swelling/Shrinking Kinetics

In Sections 4.2 and 4.3, we learned that gels swell or shrink depending on sol-
vent quality. The next consideration is how fast the gel swells or shrinks. To solve
this problem, the gel must be considered as a continuum, and the equation of
motion can be solved [24]. First, let us consider the displacement vector u(r)
when the three-dimensional elastic body undergoes an arbitrary deformation.
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O

r

dr

dr′

u(r)

r′

Figure 4.14 Deformation of a point from r to r′.

The displacement vector defines the displacement between a point (r) and the
other point (r′) (Figure 4.14).

r′ = r + u(r) (4.56)

The displacement of a point at r (dr) is given in Eq. (4.57):

r′ + dr′ = r + dr + u(r + dr) (4.57)

By substituting Eq. (4.56) into Eq. (4.47), one can obtain the following:

dr′ = dr + u(r + dr) − u(r) (4.58)

Here, we define r and u as follows:

r =
⎛⎜⎜⎝
x1
x2
x3

⎞⎟⎟⎠ , u =
⎛⎜⎜⎝
u1
u2
u3

⎞⎟⎟⎠ (4.59)

dr′ = dr +

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕u1

𝜕x1
dx1 +

𝜕u1

𝜕x2
dx2 +

𝜕u1

𝜕x3
dx3

𝜕u2

𝜕x1
dx1 +

𝜕u2

𝜕x2
dx2 +

𝜕u2

𝜕x3
dx3

𝜕u3

𝜕x1
dx1 +

𝜕u3

𝜕x2
dx2 +

𝜕u3

𝜕x3
dx3

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= dr +

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕u1

𝜕x1

𝜕u1

𝜕x2

𝜕u1

𝜕x3

𝜕u2

𝜕x1

𝜕u2

𝜕x2

𝜕u2

𝜕x3

𝜕u3

𝜕x1

𝜕u3

𝜕x2

𝜕u3

𝜕x3

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
dx1
dx2
dx3

⎞⎟⎟⎠

= dr + ũ ⋅
⎛⎜⎜⎝
dx1
dx2
dx3

⎞⎟⎟⎠ (4.60)

Because the distance between two points changes from dr to dr′, the second term
in the right hand of Eq. (4.60) clearly indicates the strain.

The tensor ũ indicates the strain of the continuum and is called the relative
deformation tensor. Any deformation described by ũ consists of contributions
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from isotropic volumetric deformation (ũvol), isovolumetric deformation (ũeq),
and rotation (ũrot). Because rotation is not a deformation, the pure deformation
is represented by ũdef .

ũdef = ũ − ũrot = ũvol + ũeq (4.61)

Each tensor is represented as follows:

ũdef =
⎛⎜⎜⎝
u11 u12 u13
u21 u22 u23
u31 u32 u33

⎞⎟⎟⎠ with uik = 1
2

(
𝜕uk

𝜕xi
+
𝜕ui

𝜕xk

)
(4.62)

ũrot =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
𝜕u1

𝜕x2
−
𝜕u2

𝜕x1

𝜕u1

𝜕x3
−
𝜕u3

𝜕x1

𝜕u2

𝜕x1
−
𝜕u1

𝜕x2
0

𝜕u2

𝜕x3
−
𝜕u3

𝜕x2

𝜕u3

𝜕x1
−
𝜕u1

𝜕x3

𝜕u3

𝜕x2
−
𝜕u2

𝜕x3
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.63)

ũvol =
1
3

(
𝜕u1

𝜕x1
+
𝜕u2

𝜕x2
+
𝜕u3

𝜕x3

)⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠ =
1
3

div u
⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠ (4.64)

ũeq =
⎛⎜⎜⎝
u11 u12 u13
u21 u22 u23
u31 u32 u33

⎞⎟⎟⎠ −
1
3

div u
⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠ (4.65)

So far, we have discussed the basics of describing strain on a continuum. We then
consider the kinetics of deformation with a focus on the minute volume element
of the continuum. The equation of motion for a minute volume element moving
in a fluid is given by the following equation:

𝜌
𝜕

2

𝜕t2 u = ∇ ⋅ 𝛔̃ − f 𝜕
𝜕t

u

𝛔̃ =
⎛⎜⎜⎝
𝜎11 𝜎21 𝜎31
𝜎12 𝜎22 𝜎32
𝜎13 𝜎23 𝜎33

⎞⎟⎟⎠ (4.66)

where 𝜌 is the density, f is the friction between the gel network and the solvent,
and 𝛔̃ is the stress tensor. The value of 𝜎ik , which is a component of 𝛔̃, is the stress
in the k-direction working on the surface orthogonal to the i-direction. The left
side of Eq. (4.66) is the product of the weight of the minute element and the accel-
eration, the first term on the right side is the force applied to the minute element,
and the second term is the viscous resistance. Because the volume change in the
gel is slow and is a semistatic process, the acceleration is approximated as 0, and
the following equation is obtained:

𝜕

𝜕t
u = 1

f
∇ ⋅ 𝛔̃ (4.67)
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The stress tensor is given by the following equation using the bulk modulus (K )
and shear modulus (G):

𝛔̃ = 3K ũvol + 2Gũeq (4.68)

Each element of the tensor is given as follows:

𝜎ik = K∇ ⋅ u𝛿ik + 2G
(

uik −
1
3
∇ ⋅ u𝛿ik

)
(4.69)

The first term of Eq. (4.69) is the stress due to the volume change, and the second
term is that due to the shear deformation. We then solve Eq. (4.67)

𝜕

𝜕t
u = 1

f
∇ ⋅ 𝛔̃ = 1

f

⎛⎜⎜⎝
𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

𝜕

𝜕x1

𝜕

𝜕x2

𝜕

𝜕x3

⎞⎟⎟⎟⎟⎟⎟⎠
= 1

f

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝜎11

𝜕x1
+
𝜕𝜎12

𝜕x2
+
𝜕𝜎13

𝜕x3

𝜕𝜎21

𝜕x1
+
𝜕𝜎22

𝜕x2
+
𝜕𝜎23

𝜕x3

𝜕𝜎31

𝜕x1
+
𝜕𝜎32

𝜕x2
+
𝜕𝜎33

𝜕x3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.70)

When we focus on the x1 direction, the following equation is obtained from Eqs.
(4.63) and (4.70):

𝜕𝜎11

𝜕x1
+
𝜕𝜎12

𝜕x2
+
𝜕𝜎13

𝜕x3

= 𝜕

𝜕x1

{
K
(
𝜕u1

𝜕x1
+
𝜕u2

𝜕x2
+
𝜕u3

𝜕x3

)
+ 2

3
G
(

2
𝜕u1

𝜕x1
−
𝜕u2

𝜕x2
−
𝜕u3

𝜕x3

)}
+ G 𝜕

𝜕x2

(
𝜕u2

𝜕x1
+
𝜕u1

𝜕x2

)
+ G 𝜕

𝜕x3

(
𝜕u3

𝜕x1
+
𝜕u1

𝜕x3

)
=
(

K + G
3

)
𝜕

𝜕x1

(
𝜕u1

𝜕x1
+
𝜕u2

𝜕x2
+
𝜕u3

𝜕x3

)
+ G

(
𝜕

2u1

𝜕x1
2 +

𝜕
2u2

𝜕x2
2 +

𝜕
2u3

𝜕x3
2

)
=
(

K + G
3

)
𝜕

𝜕x1
∇u + GΔu (4.71)

By solving the x2 and x3 directions with similar processes, one obtains the
following:

𝜕

𝜕t
u = 1

f
∇ ⋅ 𝛔̃ = 1

f

⎛⎜⎜⎜⎜⎜⎜⎝

(
K + G

3

)
𝜕

𝜕x1
∇u + GΔu(

K + G
3

)
𝜕

𝜕x2
∇u + GΔu(

K + G
3

)
𝜕

𝜕x3
∇u + GΔu

⎞⎟⎟⎟⎟⎟⎟⎠
(4.72)

For simplicity, here we consider a spherical-shaped gel, which gives a deforma-
tion vector (u) with the following form:

u(r, t) = u(r, t)r
r

(4.73)

Here, r/r is the unit vector parallel to r. Because the deformation only depends on
the distance from the origin r, due to the symmetric nature of the sphere, u(r, t)
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is the essential function governing the deformation of any point in the gel. Due
to the high symmetry, the following equation holds:

𝜕

𝜕x1
= 𝜕

𝜕x2
= 𝜕

𝜕x3
= 𝜕

𝜕r
(4.74)

Using Eq. (4.74), Eq. (4.73) can be reduced:
𝜕u(r, t)
𝜕t

r
r
= 1

f

((
K + 𝜇

3

)
𝜕

𝜕r
∇u(r, t) + GΔu(r, t)

) r
r

(4.75)

Thus, Eq. (4.76) can be obtained:
𝜕u(r, t)
𝜕t

= 1
f

[(
K + 𝜇

3

)
𝜕

𝜕r
∇u(r, t) + GΔu(r, t)

]
(4.76)

Due to the symmetry of the sphere, Eq. (4.77) holds:
𝜕

𝜕r
∇ = Δ (4.77)

Finally, one obtains the following equation:
𝜕u(r, t)
𝜕t

= 1
f

(
K + 4G

3

)
𝜕

𝜕r
∇u(r, t) = D 𝜕

𝜕r

[ 1
r2
𝜕

𝜕r
(r2u)

]
(4.78)

Notably, we applied ∇ for the 3D polar coordinate system and neglected the par-
tial derivative of the rotation angle due to the symmetry of the sphere. Because
of its similarity to the diffusion equation, this equation is called the “swelling
equation,” and D is called the collective diffusion coefficient of gels.

D =
K + 4G

3

f
(4.79)

To solve Eq. (4.78), we focus on the initial conditions (t = 0). We set the initial
radius as a0 and the equilibrium radius as a∞, and we consider the strain of a
point from the initial to the equilibrium state. Notably, the strain is defined by
setting the equilibrium state as the reference condition (Figure 4.15) because the
initial condition is not stable and is therefore not suitable for use as the reference
condition. In other words, the initial condition is a deformed state; the pressure
of 𝛱0 compresses the radius of the sphere from a∞ to a0 in the initial condi-
tion. Thus, the strain of a point, which has a distance r from the origin in the
equilibrium swollen state, in the initial condition (t = 0) is given as follows:

u(r, 0) = (a∞ − a0)
r

a∞
= Δa r

a∞
(4.80)

Figure 4.15 (a) Initial state (deformed)
and (b) equilibrium state (undeformed)
of a gel.

(a) (b)

r

u(r)a0

a∞

Π = Π0 Π = 0
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Because this strain is caused by the pressure 𝛱0, the following equation holds:

𝛱0 = K ⋅
dV
V

= K ⋅ 3 dr
r

= 3K ⋅
u(r, 0)

r
= 3K ⋅

Δa
a∞

(4.81)

To achieve the boundary condition, we focus on the force working on the surface
of the sphere in the radial direction. The deformation in the radial direction con-
tains contributions from the isotropic volumetric deformation (duvol/dr) and the
isovolumetric deformation (dueq/dr), similar to Eq. (4.61).

du
dr

=
duvol

dr
+

dueq

dr
(4.82)

The volumetric deformation is given as follows and is similar to Eq. (4.64):
duvol

dr
= 1

3
div u = 1

3
1
r2

d
dr

(r2u) = 1
3

(
du
dr

+ 2u
r

)
(4.83)

Based on Eqs. (4.82) and (4.83), dueq/dr is represented as follows:

dueq

dr
= 2

3

(
du
dr

− u
r

)
(4.84)

Given that uvol is deformation in the radial direction and ueq is deformation in
the surface direction, the stress in the radial direction (𝜎rr) is given by Eq. (4.85):

𝜎rr = 3K
duvol

dr
+ 2G

dueq

dr

= K
(

du
dr

+ 2u
r

)
+ 2G ⋅

2
3

(
du
dr

− u
r

)
=
(

K + 4
3

G
) du

dr
+ 2

(
K − 2

3
G
) u

r
(4.85)

The initial conditions are set as when the gel is immersed in the solution, the gel
surface is the free-end and the stress applied to the gel surface is 0.

𝜎rr|r=a = 0 (4.86)

By solving Eq. (4.78) using Eqs. (4.81) and (4.86) as boundary and initial condi-
tions, respectively, the following solution is obtained:

u(r, t) =
∑

n
Fn(r) exp(−Dkn

2t) (4.87)

Here, Fn(r) and kn are represented as follows:

Fn(r) = −6Δa
a∞

(−1)n

kn

[cos knr
knr

−
sin knr
(knr)2

]
(4.88)

kn = n𝜋
a∞

(4.89)

Now, we want to know the deformation of the gel surface over time (a(t)), which
is represented by using the deformation of the gel surface (u(a∞, t)).

a(t) = a∞ + u(a∞, t) (4.90)
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The function u(a∞, t) is given using Eqs. (4.87)–(4.89).

u(a∞, t) = −6Δa
∑

n

(−1)n

n𝜋

[
cos n𝜋

n𝜋
− sin n𝜋

(n𝜋)2

]
exp(−Dkn

2t)

= −6Δa
∑

n

1
(n𝜋)2 exp

(
−D

(
n𝜋
a∞

)2

t

)

= −Δa
∑

n

6
(n𝜋)2 exp

(
−n2 t

𝜏1

)
= −Δa

∑
n

un (4.91)

Here, 𝜏1 is the longest relaxation time, and un is defined as follows:

𝜏1 =
a∞

2

𝜋2D
(4.92)

un = 6
(n𝜋)2 exp

(
−n2 t

𝜏1

)
(4.93)

To visualize the time-evolution of u(a∞, t), we consider the characteristics of un.
Figure 4.16 plots u(a∞, t) and un (n = 1, 2, 5) normalized with Δa against t/𝜏1. As
is clear from the form of the equation, the absolute value of un decays, and the
decay rate increases as n increases. From this graph, one can see that the influence
of un with n ≥ 2 on the slow relaxation behavior (t > 𝜏1) is negligible. As a result,
the volume change in the spherical gel can be approximated using u1.

a∞ − a(t)
a∞ − a0

≅ 6
𝜋2 exp

(
− t
𝜏1

)
(4.94)

Experimentally, 𝜏1 is obtained as the slope of the plot of log(a∞ − a(t))/(a∞ − a0)
against t over a long time scale. Notably, 𝜏1 is proportional to a∞

2 (Eq. (4.92)); the
rates of swelling and shrinking decrease as the size of the gel increases.

The collective diffusion coefficient (D) obtained from the aforementioned
swelling measurement showed good agreement with the collective diffu-
sion coefficient measured by dynamic light scattering (DLS). By using the
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Figure 4.16 (a) u(a∞, t) normalized by Δa. (b) Dependence of un/Δa on t/𝜏1 (n = 1, 2, 5).
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Einstein–Stokes equation for D (see Section 6.2.1), one obtains a correlation
length, 𝜉.

𝜉 =
kBT

6𝜋𝜂D
(4.95)

where 𝜂 is the viscosity of the solvent. Although this value is sometimes con-
fused with the mesh size, it is not correct to relate 𝜉 to the so-called mesh size
because the density of the crosslinks and network strands are directly related to
the shear modulus (G), as shown in Chapter 3. Instead, based on Eq. (4.79), 𝜉
strongly relates to the bulk modulus, K , and the friction coefficient between the
solvent and the polymer network, f . The blob size, which is defined by Eq. (4.95),
is similar to that of the polymer solutions introduced in Eqs. (2.15) and (2.62) (see
Section 15.3).

4.5 Degradation of Polymer Gels

The decomposition behavior of materials is roughly divided into two types: sur-
face degradation and bulk degradation. Surface degradation, as its name suggests,
is degradation through surface erosion; an example of surface degradation is the
dissolution of rock sugar in water. Most solid materials show surface degradation.
On the other hand, polymer gels often show bulk degradation. Bulk degradation
occurs not from the surface but occurs when the entire body degrades homoge-
neously. Polymer gels contain a large amount of solvent, and the diffusion of small
molecules inside the gel is not much different from that in an aqueous solution.
Therefore, when a gel is degraded by a stimulus, there is no difference between
the surface and the inside of the gel, resulting in bulk degradation. Bulk degra-
dation is specific to polymer gels. In Sections 4.5.1 and 4.5.2, we explain the two
representative bulk degradation behaviors of polymer gels.

4.5.1 Degradation by Cleavage of Specific Bonds

How does the shape of the gel change during bulk degradation? To capture the
essence of the problem, we consider the following simple example: a hydrogel
having a nearly ideal four-branched network structure with one easily cleaved
bond per network strand with a fraction of rdeg. Let us consider the situation
where hydrolysis progresses. When a gel is in the as-prepared state, the gel first
swells, as discussed in Section 4.2. Since swelling and hydrolysis occur simulta-
neously, it is necessary to consider the relationship between the relaxation time
of the swelling and the half-life of the hydrolyzable bonds. Here, we assume that
the size of the gel is sufficiently small, and the relaxation time of gel swelling is
sufficiently smaller than the half-life time of the bonds of interest. Indeed, when
the size of the gel is 1 mm, the time scale for reaching the swelling equilibrium
is approximately several minutes according to Eq. (4.92) (D ≈ 10−7 cm2/s for
conventional gels) [25]. Thus, we can focus on a simple process in which the
gel reaches an equilibrium swollen state a few minutes after being immersed in
water, and then hydrolysis gradually cleaves the network strands. The cleavage
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of the network strands decreases the connectivity of the network, i.e. the elastic
modulus (or elastic pressure) is decreased. As a result, the initial equilibrium
between the elastic pressure and the osmotic pressure collapses after a certain
period. To this point, we have assumed the process in which the swelling is
sufficiently faster than the dissociation. Therefore, when the elastic modulus
decreases, the gel swells and reaches an equilibrium immediately. This process
is bulk degradation; the gel swells during degradation and eventually completely
dissolves. Assuming that the hydrolysis obeys pseudo-first-order kinetics with
a rate constant of kdeg, the probability of a network strand still connecting
neighboring junction points (p) at a certain time (t) is given as follows:

p(t) = p0 ⋅ (1 − rdeg + rdeg exp(−kdegt)) (4.96)

where p0 is the value of p at preparation (t = 0) and p0 = 1 for ideal networks.
According to the phantom network model (Eq. (3.35)) and Bethe approximation
(Eqs. (3.47) and (3.48)), the change in the elastic modulus over time, G(t), is rep-
resented as follows;

G(t) = 𝜉kT =
(1

2
P(X3) + P(X4)

)
ckT

= (1 + P(F))(1 − P(F))3ckT

=
(

3
2
−
√

1
p(t)

− 3
4

)3 (
1
2
+
√

1
p(t)

− 3
4

)
ckT (4.97)

where c (m−3) is the number density of the tetra-functional unit. Given that the
elastic pressure is always balanced with the osmotic pressure, 𝜉 and the swelling
ratio (Q) are related by Eq. (4.98):

𝜉 = −
𝜙0

Q
+ ln

(
1 − 𝜙0

Q

)
+ 𝜒

(
𝜙0

Q

)2

V1Q1∕3 (4.98)

We measured the degradation of a tetra-functional polymer gel with p0 ≈ 0.9
with different rdeg and estimated the change in 𝜉 over time based on Eq. (4.98)
[18]. The time-evolution of 𝜉 was well reproduced by Eqs. (4.96) and (4.97) with
a universal constant of kdeg. In addition, the critical connectivity ratio where a gel
turned into a sol (pc ≈ 0.46) was estimated based on the time at which the gel
was completely dissociated (tdeg). This value was somewhat higher than the crit-
ical connectivity ratio of the diamond lattice and that calculated based on Bethe
approximation (pc ≈ 0.33; see Section 3.6.1). Thus, when an appropriate set of kdeg
and pc is used, it is possible to quantitatively reproduce the degradation behavior
of gels (see Section 16.1).

Finally, we note the limitations of this treatment. First, the elution of the sol
fraction is not considered. The proportion of the polymer eluting from the gel
(sol fraction, 𝜙sol) can be roughly estimated using Bethe approximation. 𝜙sol is
the probability that no arms of any of the four branch units are connected to the
gel body, and this parameter is expressed as follows:

𝜙sol = P(F)4 =
(√

1
p
− 3

4
− 1

2

)4

(4.99)
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Because𝜙sol is negligible when p is relatively high, the polymer volume fraction of
the gel is well estimated as 𝜙0/Q, which is consistent with the assumption of Eq.
(4.98). Second, the region where the elastic modulus is well reproduced by Bethe
approximation is also limited to a high p region. Experimental results confirmed
that this treatment worked well with p > 0.75 for the tetra-functional network
[26]. Taken together, it is important to limit the range of fit using Eqs. (4.96)
and (4.97) to the initial degradation; in the case of a four-branched network, the
region should be limited to roughly the range from an initial cycle rank, 𝜉0, to
𝜉0/2 (corresponding to the region p > 0.75).

4.5.2 Degradation by Cleavage of Nonspecific Bonds

In Section 4.5.1, the degradation was caused by a readily cleavable site exist-
ing in a network strand. This section addresses the degradation behavior of
polymer networks without easily cleavable bonds. This modeling enables us to
predict the long-term stability of relatively stable gels. We model the polymer
network consisting of the network strands with chemically stable bonds, such as
carbon–carbon single bonds or ether bonds. Even these stable bonds have small
but finite decomposition rate constants (km) and decompose to a considerable
extent during long-term usage.

In Section 4.5.1 on site-specific cleavage, there was only one easily cleavable
site per network strand, and the cleavage of a bond broke the connection between
neighboring crosslinks. In other words, the cleavage of a bond is enough to break
the connection between neighboring crosslinks. However, in the case of nonspe-
cific cleavage, all bonds in a strand must be maintained to preserve the connection
between neighboring crosslinks. The probability that the neighboring crosslinks
connected by a network strand with the degree of polymerization N being still
connected after time t is represented as follows [19]:

[exp(kmt)]N = exp(Nkmt) = exp(knett) (4.100)

Here, we assume that all bonds are cleaved by a pseudo-first-order reaction (km:
decomposition rate constant). Equation (4.100) shows that the degradation of “a
network strand” follows pseudo-first-order decomposition with a decomposition
rate constant knet =Nkm. Since N is conventionally on the order of 100, this model
predicts that a network strand will decompose at a rate approximately 100 times
that of a bond. Thus, we cannot ignore degradation even for a polymer gel con-
sisting of stable chemical bonds. To examine this model, we prepared several
different polymer gels with different N and performed accelerated degradation
experiments. Based on an analysis similar to that used in Section 4.5.1, a relation-
ship between knet and N was estimated from the change in the swelling degree
as a function of time. The values of knet and N are linearly related, suggesting
that Eq. (4.100) reproduces the decomposition behavior of the polymer gel well.
Again, knet is conventionally on the order of 100km; nonspecific decomposition
has a significant effect and must be considered for the long-term usage of gel.
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Column 4: Diffusions of Polymer Network During
Swelling

The swelling equation is based on a unique concept that defines the swelling as
a diffusion process of a polymer network to the external solvent phase, not the
diffusion process of solvent molecules to the gel phase. The swelling equation
is established by solving the equation of motion for a unit volume of polymer
network:

𝜕u(r, t)
𝜕t

= 1
f

(
K + 4G

3

)
𝜕

𝜕r
∇u(r, t) = D 𝜕

𝜕r

[ 1
r2
𝜕

𝜕r
(r2u)

]
(4.78)

D =
K + 4G

3

f
(4.79)

where D is cooperative diffusion coefficient, K is bulk modulus, G is elastic mod-
ulus, and f is a parameter indicating the friction between polymer network and
solvent molecule. Based on Eq. (4.79), D can be estimated from three parameters,
K , G, and f . Notably, although K and G are well-defined parameters, f is not con-
ventional well-defined parameter. The unit of f is (N s)/m4, and different from
that of conventional friction coefficient (–). Tanaka proposed that f of hydro-
gel was estimated from water permeation experiments, where one measured the
permeation of water through a gel membrane with applying pressure. Based on
f estimated from the water permeation measurement, one can estimate D based
on Eq. (4.79) (DWP).

Some authors examined DWP in comparison with Ds estimated by other two
representative methods. One is the estimation from swelling experiments using
Eqs. (4.94) and (4.92) (DSW):

a∞ − a(t)
a∞ − a0

≅ 6
𝜋2 exp

(
− t
𝜏1

)
(4.94)

𝜏1 =
a∞

2

𝜋2D
(4.92)

Although this is a direct estimation of D, one needs to assume that D is constant
during swelling, which is unlikely to hold in a large swelling.

Another method is based on DLS proposed by Shibayama. Generally, scattering
from a gel contains two components from dynamic network fluctuation (DDLS)
and static heterogeneity. By analyzing a several tens of scattering data of the gel,
one can remove the contribution from static heterogeneity and extract that from
dynamic fluctuation. Although this methodology is another direct estimation of
D, the detected motion is a thermal fluctuation based on Brownian motion, which
can be different from translational motion in swelling.

Previous works observed rough agreement of these three Ds; however, the
number of samples were not large enough and full comparison of three Ds was
not performed. Recently, we have compared three Ds (DWP, DSW, and DDLS)
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of a series of polymer gels with tuned polymer concentration and molecular
weight of network strand. We found that DSW and DDLS well corresponded with
each other; while DWP showed different trend. In addition, the results of DSW
and DDLS well fit in with the concept of cooperative diffusion coefficient. On
the other hand, the deviation of DWP from the other Ds has been most likely
due to the misestimation of f , which governs the “permeation of water” not
the “permeation of polymer network.” Conversely, this deviation supports the
original idea of Tanaka that the swelling is governed by the diffusion of polymer
network, which is qualitatively different from that of water molecules [27, 28].
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Deformation and Fracture
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5.1 Description of Deformation

In this section, we first discuss the strain tensor, which is an important concept
for understanding deformation. The strain tensor is a tensor describing the gen-
eral deformation of a continuum. Some people may think that it is sufficient to
describe deformation with a 3D vector because we deform the material in 3D
space. Although this is correct in a certain sense, a 3D vector is generally insuffi-
cient to describe the deformation in 3D, unless the vector is appropriate (indeed,
all 3D deformations can be described with three independent variables called
invariants).

5.1.1 Displacement Vector

The external force “moves” and “deforms” the object. The movement and defor-
mation of a continuum can be described using a set of vectors. The initial position
vector (P0) of a certain point (A) in the continuum is represented as follows:

P0 =
3∑

i=1
P0

i ei (i = 1, 2, 3) (5.1)

Here, ei is the unit basis vector along each coordinate axis. The point is shifted to
position P after deformation.

P =
3∑

i=1
Piei (5.2)

Here, the displacement vector u before and after the deformation can be written
as follows:

u(x1, x2, x3) = P − P0 (5.3)
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5.1.2 Strain Tensor

Focusing on the two squares shown by the dotted lines in Figure 5.1, although
the original shapes are the same, they are deformed differently depending on
their initial alignment. In other words, the angles were preserved, and only the
lengths were changed in the upper rectangle, whereas both the angles and lengths
were changed in the lower rectangle. As shown in Figure 5.1, deformations can
be classified into two types: changes in lengths and changes in angles. In contin-
uum mechanics, these deformations are called “normal strain” and “shear strain,”
respectively. In Section 5.1.2.1, we introduce how to describe these strains using
displacement vectors.

5.1.2.1 Normal Strain
Normal strains are simple elongations and compressions and contain indepen-
dent strains in the x1, x2, and x3 directions in three dimensions. For the sake
of simplicity, we first consider the 1D deformation of a line segment (length
dx1) with an end-to-end vector, x1 and x1 + dx1. Due to the deformation, the
coordinate of the left end is moved from x1 to x1 + u1(x1), where u1(x1) is the
displacement vector (Figure 5.2). Given that the elongation strain in the axial
direction is 𝜀1, the length of the deformed segment is (1+ 𝜀1)dx1. The coordinates
of the right end of the deformed segment are written as x1 +u1(x1)+ (1+ 𝜀1)dx1
or x1 + dx1 +u1(x1 + dx1).

Based on these two different expressions, we can obtain the following expres-
sion for 𝜀1:

𝜀1 =
u1(x1 + dx1) − u1(x1)

dx1
(5.4)

Deformation

Figure 5.1 Deformation of materials. Even under the same deformation, different shapes
appear to show different deformations.

x1 x1 + dx1

u1(x1)

u1(x1 + dx1)

dx1 (1 + ε1)

dx1

Figure 5.2 Deformation of a 1D
object by a normal strain.
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When the length of the segment approaches 0, the strain at a certain point,
which indicates a local expansion or contraction, can be obtained from the
following:

lim
dx1→0

𝜀1 = lim
dx1→0

u1(x1 + dx1) − u1(x1)
dx1

=
du1

dx1
(5.5)

This argument can be extended to arbitrary points (x1, x2, x3) in 3D materials,
and the strain at a certain point can be written as follows:

𝜀1(x1, x2, x3) = lim
dx1→0

u1(x1 + dx1) − u1(x1)
dx1

=
𝜕u1

𝜕x1
(5.6)

Notably, we do not need to consider the partial derivatives of u1 with respect to
the other directions (x2 and x3) for 𝜀1.

5.1.2.2 Shear Strain
Shear strain represents the deformation of an angle. An example of pure shear
deformation is a deformation of a square to a parallelogram on a 2D surface
(Figure 5.3). Here, we consider the situation in which the lengths of the lines do
not change and that the lines along the x1 and x2 axes are tilted by angles of 𝛼 and
−β from their initial directions, respectively (for angular changes, anticlockwise
is defined as positive). In this deformation, a point (x1, x2) is moved to (x1 + u1(x1,
x2), x2 + u2(x1, x2)). If the angular change is minute, the following equation can
be obtained:

𝛼 ≃ sin 𝛼 =
u2(x1 + dx1) − u2(x1)

dx1
(5.7)

x2

x1

(x1, x2 + dx2)

(x1 + dx1, x2)

(x1, x2)
u1(x1, x2)

u2(x1, x2) u2(x1 + dx1, x2)

β

α

u1(x1 + dx1, x2)

Figure 5.3 Deformation of a rectangle by shear strain.
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x1

2
2

(a) (b)

β – α
α + β

2
α + β

x2 x2

x1

Figure 5.4 Shear strain can be divided into two processes: (a) rotation and (b) deformation.

Furthermore, as dx1 approaches 0, the shear strain of a certain point, which indi-
cates the distortion of the point, can be obtained as Eq. (5.8):

lim
dx1→0

𝛼 = lim
dx1→0

u2(x1 + dx1) − u2(x1)
dx1

=
𝜕u2

𝜕x1
(5.8)

Similarly, we can calculate 𝛽 as Eq. (5.9):

𝛽 =
𝜕u1

𝜕x2
(5.9)

Notably, the deformation by angles of 𝛼 and 𝛽 do not always contribute to pure
“deformation.” For example, in the case of 𝛼 =−𝛽, the shape is unchanged, and
the square is only rotated by 𝛼. In this way, rotations are incorporated into shear
strains, and these should be removed to extract the pure deformation component.
The deformation shown in Figure 5.4 can be divided into two processes, namely,
a rotation and a shear deformation, as shown as follows:

1. Rotation by (𝛽 − 𝛼)/2 clockwise with retention of the shape.
2. Rotating both sides of the square by (𝛼 + 𝛽)/2 in opposite directions while

maintaining the side lengths.

The first process is not deformation, and the second process is shear
deformation.

This division may be intuitive when you imagine the deformation of a solid.
To purely deform a solid, you need to apply the same force from both sides as
solids rotate when you apply a force from only one side. The previously mentioned
second process is similar to the pure deformation of a solid. In general, when two
sides rotate by 𝛼 and 𝛽, the rotation component is (𝛽 − 𝛼)/2 and the deformation
component is (𝛼 + 𝛽)/2. Based on this treatment, the deviations from the x1 and
x2 axes must be the same as (𝛼 + 𝛽)/2.

In the diagram shown in Figure 5.4, the deformation strains in the direction
perpendicular to the x1 and x2 axes are called 𝜀12 and 𝜀21, respectively. 𝜀12 indi-
cates how much the vector in the x1 direction rotates toward the x2 direction and
can be described as follows:

𝜀12(x1, x2, x3) = 𝜀21(x1, x2, x3) =
𝛼 + 𝛽

2
= 1

2

(
𝜕u1

𝜕x2
+
𝜕u2

𝜕x1

)
(5.10)
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Here, we slightly change the notation of the nominal strain.

𝜀1(x1, x2, x3) = 𝜀11(x1, x2, x3) =
1
2

(
𝜕u1

𝜕x1
+
𝜕u1

𝜕x1

)
(5.6′)

In conclusion, deformations are represented as a strain tensor composed of
nine components.

𝜀ij =
1
2

(
𝜕ui

𝜕xj
+
𝜕uj

𝜕xi

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕u1

𝜕x1

1
2

(
𝜕u1

𝜕x2
+
𝜕u2

𝜕x1

)
1
2

(
𝜕u1

𝜕x3
+
𝜕u3

𝜕x1

)
1
2

(
𝜕u2

𝜕x1
+
𝜕u1

𝜕x2

)
𝜕u2

𝜕x2

1
2

(
𝜕u2

𝜕x3
+
𝜕u3

𝜕x2

)
1
2

(
𝜕u3

𝜕x1
+
𝜕u1

𝜕x3

)
1
2

(
𝜕u3

𝜕x2
+
𝜕u2

𝜕x3

)
𝜕u3

𝜕x3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(5.11)

Because the rotation mode has been removed, the deformation tensor is symmet-
ric (𝜀ij = 𝜀ji); six of the nine variables are independent strain components.

5.1.3 Principal Direction and Strain

Again, focusing on Figure 5.1, a circle is transformed into an ellipse regardless
of the position, while squares arranged at different angles are transformed into
different shapes. In other words, different coordinate systems give different stress
tensors for deformation, and one can find a concise description of deformation
with an appropriate coordinate system. Under an appropriate coordinate system,
any deformation can be represented by only normal strains. The directions of the
appropriate coordinate system are called the “nominal directions of strain.”

For example, even shear deformation can be converted into simple elonga-
tional deformation. As shown in Figure 5.5, a square deforms to a rhombus by
a shear deformation under an orthogonal coordinate system of x1 and x2. On the
other hand, if the coordinate system is taken into an orthogonal coordinate sys-
tem consisting of x1

′ and x2
′ parallel to the two diagonal lines, this deformation

is converted to an elongation and a compression in the x1
′ and x2

′ directions,
respectively. In this way, any deformation can be represented by normal strains.

Next, we will start from where the nominal directions of strain are represented
by element vectors x1, x2, and x3. Under the coordinate system, shear deformation

Figure 5.5 Shear strain can be regarded
as a normal strain under an appropriate
coordinate system. x2′

x1′x2

x1
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is not generated on any surfaces, and only deformation in the normal direction is
generated. Therefore, the amount of deformation in the nominal direction (𝛿xi)
can be expressed as follows:

1 +
𝛿xi

xi
= 𝜆i (constant) (5.12)

Here, 𝜆i is the elongation ratio with respect to the ith nominal direction (principal
strain) and is related to the strain tensor (𝜀ij) as follows:

⎛⎜⎜⎝
𝜀11 𝜀12 𝜀13
𝜀21 𝜀22 𝜀23
𝜀31 𝜀32 𝜀33

⎞⎟⎟⎠ x1 = 𝜆1x1 (5.13)

Indeed, by solving Eq. (5.13) for a general xi and 𝜆i, one can find a set of three
xi and 𝜆i pairs. This operation mathematically corresponds to finding eigenval-
ues/eigenvectors of the distortion tensor.⎛⎜⎜⎝

𝜀11 − 𝜆 𝜀12 𝜀13
𝜀21 𝜀22 − 𝜆 𝜀23
𝜀31 𝜀32 𝜀33 − 𝜆

⎞⎟⎟⎠ = 0

{(𝜀11 − 𝜆)(𝜀22 − 𝜆)(𝜀33 − 𝜆) + 𝜀12𝜀23𝜀31 + 𝜀13𝜀21𝜀32}
− {𝜀13(𝜀22 − 𝜆)𝜀31 + 𝜀23𝜀32(𝜀11 − 𝜆) + (𝜀33 − 𝜆)𝜀12𝜀21} = 0 (5.14)

Since 𝜀ij = 𝜀ji because of its symmetry, it can be transformed as follows:

𝜆
3 − (𝜀11 + 𝜀22 + 𝜀33)𝜆2 + (𝜀22𝜀33 + 𝜀33𝜀11 + 𝜀11𝜀22 − 𝜀11

2 − 𝜀22
2 − 𝜀33

2)𝜆

+
||||||
𝜀11 𝜀12 𝜀13
𝜀12 𝜀22 𝜀23
𝜀13 𝜀23 𝜀33

|||||| = 0 (5.15)

This equation is a cubic equation of 𝜆 and has three real roots when 𝜆 > 0.

𝜆
3 − I1𝜆

2 + I2𝜆 + I3 = 0 (5.16)

When substituting the three roots of Eq. (5.16) into Eq. (5.13), three vectors in
the directions of the nominal strain (xi), which are called the principal axes, are
obtained.

Let us summarize the process discussed here. For any deformation tensor, it
is possible to determine three sets of principal axes (xi) and principal strain (𝜆i).
Since xi is fixed if 𝜆i is determined, any deformation can be described by only
three 𝜆i values. Since 𝜆i is a solution of Eq. (5.16), if I1, I2, and I3 are determined,
three 𝜆i values are also determined. In other words, the deformation is defined
by I1, I2, and I3 as shown as follows:

I1 = 𝜀11 + 𝜀22 + 𝜀33 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2 (5.17)

I2 = 𝜀22𝜀33 + 𝜀33𝜀11 + 𝜀11𝜀22 − 𝜀11
2 − 𝜀22

2 − 𝜀33
2

= 𝜆1
2
𝜆2

2 + 𝜆2
2
𝜆3

2 + 𝜆3
2
𝜆1

2 (5.18)

I3 =
||||||
𝜀11 𝜀12 𝜀13
𝜀12 𝜀22 𝜀23
𝜀13 𝜀23 𝜀33

|||||| = 𝜆1
2
𝜆2

2
𝜆3

2 (5.19)
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Equations (5.17)–(5.19) are obtained by comparing Eqs. (5.15) and (5.16). Since
Ii is identical for the deformations, it is called “invariant of deformation.” Ii can
be calculated from Eqs. (5.17)–(5.19) even if we use any set of strains (not the
principal strains); determination of a set of invariants is much easier than deter-
mining the set of principal strains. The physical meanings of I1, I2, and I3 are the
average deformation ratio in one direction, the average change in surface area,
and the volume change due to deformation. In other words, any deformation is
defined by these three parameters.

5.2 Phenomenological Description of the Strain Energy
Density Function

Energy is required to homogeneously deform an elastic body. The free energy
stored in a unit volume is called the strain energy density function (W function).
Because all deformations are defined by the invariants, the W function should
be a function of the invariants (W = W (I1, I2, I3)). Soft materials, such as gels
and rubbers, have much lower elastic modulus values compared with their bulk
modulus values, which indicates volumetric compression is difficult. Thus, they
do not show apparent volumetric changes under moderate stress (incompress-
ibility, I3 = 1), and only two invariants (I1 and I2) determine the deformation.
Based on this background, Mooney has proposed a W function as a polynomial
function of (I1 − 3) and (I2 − 3) [1].

W =
∞∑

i,j=0
Cij(I1 − 3)i(I2 − 3)j (5.20)

The subtraction of “3” from I1 and I2 comes from the initial condition (I1 = I2 = 3
in the initial undeformed condition). Because Eq. (5.20) has such large number of
combinations, conventionally only some of terms are used. For example, if Cij = 0
except for C10, one obtains

W = C10(I1 − 3) (5.21)

Equation (5.21) has the same function as the neo-Hookean model (Eq. (3.9))
derived from a molecular picture [2]. This equation is known to reproduce the
mechanical properties of dilute gel. The W function consisting only of linear I1
and I2 terms is called the Mooney model [1].

W = C1(I1 − 3) + C2(I2 − 3) (5.22)

Here, C1 and C2 are constants. Because the effect of the C2 term is remarkable
in a concentrated polymer network system such as rubber, the C2 term is gener-
ally attributed to entanglements. Although the Moony model can reproduce the
uniaxial stretching behavior of rubber to some extent, the results of the biaxial
stretching test cannot be reproduced, as discussed later. To precisely reproduce
the experimental results, higher-order terms are required. Thus, the Mooney
model is not sufficient to reproduce a wide range of mechanical properties of
polymer networks [3–7].
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Here, we introduce two famous phenomenological W functions. One is the
Ogden model, which is a function with power series of 𝜆x, 𝜆y, and 𝜆z [8].

W =
∑

n

𝜇n

𝛾n
(𝜆x

𝛾n + 𝜆y
𝛾n + 𝜆z

𝛾n − 3) (5.23)

The other is the Gent model [9], which takes into account the finite extensibility
of the chain. Gent attempted to reproduce the strain hardening behavior due to
the chain elongation effect by using a natural logarithm.

W = −G
2

Jm ln
(

1 −
I1 − 3

Jm

)
(5.24)

Here, Jm is the value of I1 − 3 at maximum extension. The relationship between
nominal stress and the elongation ratio under uniaxial stretching is as follows:

𝜎 = G(𝜆x − 𝜆x
−2)

(
1 −

𝜆x
2 − 2𝜆x

−1 − 3
𝜆max

2 − 2𝜆max
−1 − 3

)−1

(5.25)

𝜆max is the maximum elongation ratio under uniaxial stretching. When
approaching 𝜆 = 𝜆max, the stress diverges to infinity. Although the Gent model
is a phenomenological model, it is focused on the finite extensibility of the
network strands. From this viewpoint, this model is a semiphenomenological
model with a molecular picture. These phenomenological models are very useful
in discussing the relationship between stress and the elongation ratio without
relying on a particular molecular picture.

5.2.1 Estimation of the Strain Energy Density Function

In Section 5.2, we introduced the neo-Hookean model and the Mooney model.
They are the only models based on a simple assumption that the W function can
be written as the sum of the invariants of the deformation tensor. Reproducing
all the experimental results with these models is basically impossible. Therefore,
it is also important to estimate the W function from the experimental results.
Here, we describe a phenomenological method to estimate the W function from
experimental results.

Uniaxial deformations, including stretching and compression, are among the
most popular deformation modes. Indeed, many studies have investigated W
functions based on these uniaxial deformation results. However, notably, such
experimental results are insufficient to investigate W functions. The filled region
in Figure 5.6 shows the physically accessible deformation range of I1 and I2
under isovolumetric deformation. Among all the deformation regions, uniaxial
stretching, and compression cover only limited regions, which are indicated
by a single solid line. Thus, an estimation of the W function based only on
uniaxial experiments can be incorrect. Even the W functions that can reproduce
the uniaxial stretching behavior cannot reproduce stress–strain curves for
other deformations, including biaxial stretching. To estimate the W function
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Figure 5.6 Relationships between I1 and I2 under isovolumetric deformation.

phenomenologically, stress–strain relationships in a wide range of deformations
must be considered.

To estimate the W functions, equi-biaxial and pure shear deformations are
often utilized. Biaxial stretching is a deformation mode in which a sample is
isotropically stretched in two directions, the x and y directions (𝜆x = 𝜆y). Under
pure shear deformation, a sample is only stretched in the x direction, and ini-
tial dimension in the y direction (𝜆y = 1) is maintained. The application of such a
deformation seems difficult to achieve; it requires a biaxial stretching apparatus
in which the sample is independently stretched along two axes.

The Rivlin–Saunder method is a method for estimating a W function based
on various stress–strain curves. The method first estimates 𝜕W /𝜕I1 and 𝜕W /𝜕I2
with respect to the experimental values 𝜆x and 𝜆y according to Eq. (5.26). The
values of 𝜕W /𝜕I1 and 𝜕W /𝜕I2 are plotted against I1 and I2, respectively. By inte-
grating these equations with respect to I1 and I2, one can estimate W :

𝜕W
𝜕I1

= 1
2(𝜆x

2 − 𝜆y
2)

[
𝜆x

3
𝜎x

𝜆x
2 − (𝜆x𝜆y)2

−
𝜆y

3
𝜎y

𝜆y
2 − (𝜆x𝜆y)2

]
𝜕W
𝜕I2

= 1
2(𝜆x

2 − 𝜆y
2)

[
𝜆x𝜎x

𝜆x
2 − (𝜆x𝜆y)2

−
𝜆y𝜎y

𝜆y
2 − (𝜆x𝜆y)2

]
(5.26)

Figure 5.7 shows 𝜕W /𝜕I1 and 𝜕W /𝜕I2 for a poly dimethyl siloxane (PDMS)
elastomer against (I1 − 3) and (I2 − 3). As shown in Figure 5.7, each partial differ-
ential forms a plane surface, suggesting that W can be described by the following
power expansion up to the second order of I1 − 3 and I2 − 3:

W = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3)
+ C20(I1 − 3)2 + C02(I2 − 3)2 (5.27)
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Figure 5.7 Partial differential quantity by I1 and I2 of the W function of a PDMS elastomer.
Source: Kawamura et al. 2001 [28]. Reproduced with permission of American Chemical Society.

By substituting Eq. (5.27) into Eq. (5.26), the following equations are obtained:
𝜕W
𝜕I1

= C10 + C11(I2 − 3) + 2C20(I1 − 3)

𝜕W
𝜕I2

= C01 + C11(I1 − 3) + 2C02(I2 − 3) (5.28)

Each coefficient can be determined from the slope and intercept of the plot in
Figure 5.7. This result strongly suggests that general stress–strain curves cannot
be reproduced by the neo-Hookean model or the Mooney–Rivlin model, and at
least the second-order terms of I1 and I2 are necessary. In particular, the term I2
generates a force acting in a direction (y or z axes) perpendicular to the stretch-
ing direction (x axis), which is not considered in conventional molecular models
because it is difficult to take into account such cross-coupling effects in molecular
models.

Biaxial stretching tests for polymer gels have been well studied by Urayama, and
cross-couplings in gels with various structures have been discussed. A pure shear
deformation (stretching in the x direction while maintaining the dimension in the
y direction) is one of the best deformation modes for observing cross-coupling
effects; the contribution of the cross-coupling can be observed as the stress along
the y axis. Figure 5.8 shows the results of pure shear deformation of a slide-ring
gel [10] with movable crosslinks, conventional polyacrylamide gel (PAAm gel)
[10], and Tetra-PEG gel [11, 12]. The vertical axis shows the stress ratio (𝜎y/𝜎x),
the nominal stress in the y direction is normalized by that in the x direction, and
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Figure 5.8 Stress ratio under pure shear deformation (𝜎y/𝜎x) against the elongation stress
ratio in the x direction (𝜆x). Source: Urayama 2016 [29]. Reproduced with permission of John
Wiley and Sons.

the horizontal axis shows the elongation ratio in the x direction. The solid line in
Figure 5.8 shows the prediction by the neo-Hookean model, where the W func-
tion consists only of the I1 term

(
𝜕W
𝜕I2

= 0
)

. Indeed, all the models based only
on I1 show the same prediction as the neo-Hookean model. Thus, if there is no
cross-coupling effect, the experimental data should be on this line.

For acrylamide gels, the stress ratio was far from what was predicted by
the I1-based model, suggesting that the contribution of the I2 term in the W
function is significant. This deviation is expected to be due to the heterogeneity
of PAAm gels, including the entanglements. On the other hand, the stress ratio
of the Tetra-PEG gel is much lower than that of PAAm gels but is higher than
the ratio predicted by the model. Furthermore, the upward deviation increased
with increasing polymer concentration. Based on this analysis, the effect of
cross-coupling disappears when extrapolating the network concentration to 0.
Thus, the cross-coupling in the Tetra-PEG gel is attributed to the nonideality
of the networks, such as the excluded volume effect of the network strands.
For the slide-ring gel, the stress ratio was consistent with the model prediction
regardless of the crosslinking density. This behavior has been attributed to the
fact that the crosslinking points move, which homogeneously disperses the
stress, attenuating the cross-coupling. Although recent works have shown that
the effect of cross coupling depends on the crosslinking structure, the subject has
not been fully elucidated. Discussions about the interpretation of the physical
meaning of phenomenally derived W functions are ongoing.



120 5 Deformation and Fracture

5.3 Molecular Models for the Strain Energy Density
Function

In this section, we introduce some representative strain energy density func-
tions based on molecular pictures. The W functions of the molecular models
are generally estimated by setting the elastic free energy of a single chain under
certain assumptions and integrating each free energy. Notably, the molecular
models introduced here show only limited agreement with experimental results,
and there are no models that can accurately reproduce a series of experimen-
tal results, including biaxial stretching data. This disagreement, however, does
not diminish the importance of molecular models because the ultimate goal is to
clarify the molecular picture. Therefore, it is important to know the essence of
the major molecular models.

5.3.1 Neo-Hookean Model

Pioneering works in modeling the elasticity of rubber were conducted by Kuhn,
and these models were later expanded to large deformation regions. Among the
series of models, we introduce the neo-Hookean model, which is the simplest
model [1, 13, 14]. This model is based on the following assumptions:

i. The polymer network has 𝜈 chains per unit volume. Here, the chain refers to
the polymer segment between the crosslinks.

ii. The mean square end-to-end distance of all chains in the undeformed state is
the same as that of the uncrosslinked free chains.

iii. Deformations are not accompanied by volume changes.
iv. The deformation ratio of the bulk corresponds to that of microscopic chains

(affine deformation).
v. The conformation of each chain is described by Gaussian statistics, and the

total entropy of the network can be described as the sum of the entropies of
the chains.

Under these assumptions, the entropy change due to deformation is calculated
as follows. The cubic unit lattice is deformed by 𝜆x, 𝜆y, and 𝜆z in the x, y, and z
directions, respectively. From Eq. (3.8), the entropy change, Δs, of a single chain
by deformation is given as follows:

Δs = s − s0 = −k 3
2Na2

{{
𝜆1

2 − 1
}

x0
2 +

{
𝜆2

2 − 1
}

y0
2 +

{
𝜆3

2 − 1
}

z0
2} (5.29)

According to assumption (v), the total entropy change in 𝜈 chains can be
described as a simple sum of Eq. (5.29) for each chain. The total entropy change,
ΔS, can be written as follows:

ΔS =
∑

Δs=−k 3
2Na2

{{
𝜆1

2 − 1
}∑

x0
2 +

{
𝜆2

2 − 1
}∑

y0
2 +

{
𝜆3

2 − 1
}∑

z0
2
}

(5.30)∑
x0

2 refers to the sum of the end-to-end square distances in the x0 direction of
𝜈 chains. Because the undeformed chain is isotropic,

∑
x0

2 is written as follows:∑
x0

2 =
∑

y0
2 =

∑
z0

2 = 1
3
∑

r0
2 (5.31)
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Assuming that the root-mean and the mean square are equal, the following
equation is obtained:∑

r0
2 = 𝜈r0

2 (5.32)

Here, r0
2 is the mean square length of the chain. By substituting Eqs. (5.31) and

(5.32) into Eq. (5.30), one obtains the following equation:

ΔS = − 𝜈k
2Na2 r0

2 {
𝜆1

2 + 𝜆2
2 + 𝜆3

2 − 3
}

(5.33)

Since the relationship r0
2 = a2N is obtained from assumption (ii), Eq. (5.33) is

converted to Eq. (5.34);

ΔS = −1
2
𝜈k(𝜆1

2 + 𝜆2
2 + 𝜆3

2 − 3) (5.34)

This expression does not contain N , indicating that the entropy change in the
polymer network does not directly depend on the length of the chains, which
is another indication that even if chains of different lengths coexist in the gel,
the equation holds. Thus, this equation is applicable to polymer gels formed
from random crosslinking processes. Using Eq. (5.34), we can directly estimate
the Helmholtz energy of the whole system. Assuming that there is no change
in internal energy due to deformation, the change in the free energy, W , due
to deformation can be written as W = −TΔS. Thus, the following equation is
obtained:

W = 1
2
𝜈kT(𝜆1

2 + 𝜆2
2 + 𝜆3

2 − 3) (5.35)

Equation (5.35) can be rewritten as follows:

W = G
2
(𝜆1

2 + 𝜆2
2 + 𝜆3

2 − 3) (5.36)

G = 𝜈kT (5.37)

Although the derivations are different, these equations are the same as Eqs. (3.12)
and (3.15).

5.3.2 Inverse Langevin Model

The neo-Hookean model assumes that the segment distribution always follows
the Gaussian distribution. Thus, this model cannot be applied to highly stretched
chains, which do not obey Gaussian statistics. Indeed, upward deviations
have been observed in many experimental results, and this effect is called the
finite extensibility effect. The pioneering statistical model that considers the
finite extensibility effect is the inverse Langevin model proposed by Kuhn and
Grün [15]. They modeled the relationship between the stress and the segment
orientation based on analogy to the relationship between an applied electric field
and the dipole orientation.

Figure 5.9 shows a freely jointed chain consisting of n bonds with +q and −q
charges at the ends. In the absence of an external force, these segments are ran-
domly distributed, and there is no correlation between adjacent segments. When
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Figure 5.9 Deformation of polymer chains with a charged
group at each end under an electric field.

an electric field, E, is applied in the z direction, forces of f = qE and −f = qE are
applied to the positive and negative charges, respectively.

The energy stored in the chain (U) is proportional to the end-to-end vector (R).

U = −qE ⋅ R = −f ⋅ R = −f ⋅ R1 (5.38)

R1 is the normal in the x1 direction of R. Since the number of chain conforma-
tions, 𝜔, follows the Boltzmann distribution, it can be written as follows:

𝜔 = exp
(
− U

kT

)
(5.39)

Thus, the distribution function, Ω, corresponding to the sum of all the confor-
mations is expressed as follows:

Ω =
∑
states

𝜔 =
∑
states

exp
( fR1

kT

)
(5.40)

In the case of a freely jointed chain, the number of conformations is determined
by the variety of bond angles. Given the spherical coordinates for each bond, Ω
is represented using two deflection angles, 𝜃 and 𝜑.

Ω =
∑
states

exp
( fR1

kT

)
= ∫ exp

( fR1

kT

) N∏
i=1

sin 𝜃i d𝜃i d𝜑i (5.41)

Additionally, R1 is expressed using the bond length a and 𝜃.

R1 =
N∑

i=1
a cos 𝜃i (5.42)
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By substituting Eq. (5.42) into Eq. (5.41), one obtains the following relationship:

Ω = ∫ exp

(
fa
kT

N∑
i=1

cos 𝜃i

) N∏
i=1

sin 𝜃i d𝜃i d𝜑i

=
[
∫

𝜋

0
2𝜋 sin 𝜃i exp

(
fa
kT

cos 𝜃i

)
d𝜃i

]N

=
[

2𝜋
fa∕kT

{
exp

(
fa
kT

)
− exp

(
−

fa
kT

)}]N

(5.43)

Combining Eq. (5.44) with Eq. (5.43) provides Eq. (5.45):

sinh x =
exp(x) − exp(−x)

2
(5.44)

Ω =
⎡⎢⎢⎢⎣

4𝜋 sinh
(

fa
kT

)
fa
kT

⎤⎥⎥⎥⎦
N

(5.45)

Based on this distribution function, the Gibbs free energy (F =−kT lnΩ) can be
expressed as a function of f .

F = −kNT
[

ln
(

4𝜋 sinh
(

fa
kT

))
− ln

(
fa
kT

)]
(5.46)

The average end-to-end distance ⟨R⟩ is calculated as a derivative of F with
respect to f , which gives the following equation:

⟨R⟩ = −𝜕F
𝜕f

= 𝜕

𝜕f
kNT

[
ln

(
4𝜋 sinh

(
fa
kT

))
− ln

(
fa
kT

)]

= kNT
⎧⎪⎨⎪⎩

1

4𝜋 sinh
(

fa
kT

)4𝜋 cosh
(

fa
kT

)
a

kT
− 1

fa∕kT
a

kT

⎫⎪⎬⎪⎭
= bN

{
coth

(
fa
kT

)
− 1

fa∕kT

}
(5.47)

The term inside of the parentheses is the Langevin function (Eq. (5.48)):

(x) = coth(x) − 1
x

(5.48)


(

fa
kT

)
=

⟨R⟩
aN

(5.49)

Given that aN = Rmax, the force can be written as a function of the elongation
ratio:

f = kT
a
−1

( ⟨R⟩
Rmax

)
(5.50)

This equation is called the inverse Langevin model, and its shape is shown
in Figure 5.10 with that of the Gaussian chain (Eq. (1.37)). Although Rmax is
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Figure 5.11 Schematic illustration of
the (a) three- and (b) eight-chain
models.

not included in Eq. (1.37), Rmax is set to aN when normalizing R. In the small
deformation region, both the Langevin and Gaussian chains show a linear
relationship between stress and the elongation ratio (Hooke’s law). The Gaussian
chain shows a linear relationship over a wide range of deformations, even at
R/Rmax > 1. On the other hand, strain hardening is observed in the Langevin
chain, and the values diverge at R/Rmax = 1.

Since the entropy of a single chain is successfully estimated, the entropy of a
network can be calculated as a simple sum of the contributions of each network
strand. Unlike Gaussian chains, in the case of Langevin chains, the arrangement
of the network strands influences the entropy of the network. The popular
arrangements are the three-chain model [16] and the eight-chain model [17]
(Figure 5.11).

Although we do not explain the calculation process in detail, we note here that
the arrangements of chains are simply for calculation purposes. Notably, these
models do not truly represent the tri-functional or octa-functional crosslinking
systems. The arrangement defined here is only virtual, and it allows the effective
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deformation of chains during a macroscopic deformation to be estimated. The
three-chain model develops Eq. (5.50) for three dimensions. In this model, the
chains are equally divided in the orthogonal coordinate directions of the x, y, and
z axes, and each contribution is calculated; two of the three chains are assumed
to be compressed during stretching. On the other hand, the eight-chain model
considers eight chains extending from the center toward each vertex of a cube; all
the chains are deformed in the same manner. The stress–elongation relationships
in uniaxial deformation as predicted from the three-chain model (Eq. (5.51)) and
eight-chain model (Eq. (5.52)) are shown as follows:

𝜎 = G
√

N

(
𝜆1ℒ

−1

(
𝜆1√

N

)
− 𝜆1

−2ℒ−1

(
𝜆1

−2√
N

))
(5.51)
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𝜆chain√

N

)(
𝜆1

2 − 𝜆1
−1

𝜆chain

)
𝜆chain = 1√

3
(𝜆1

2 + 𝜆2
2 + 𝜆3

2)1∕2 (5.52)

5.4 Scaling for Large Deformation

In Section 5.3, we introduced the estimation of the stress–elongation relationship
based on W functions. Despite the qualitative difference between phenomeno-
logical and molecular models, both have drawbacks that require further discus-
sion. The molecular models do not show complete agreement with experimental
results, while the phenomenological models do not provide the molecular inter-
pretation. Thus, at this stage, neither approach has achieved great success. In this
section, we coarse-grain the problem and introduce the scaling approach to the
large deformations.

Here, we apply the scaling for the stretching of a single polymer chain as
discussed in Chapter 1 to polymer networks. In Section 1.3.3, a real chain was
stretched, and the relationship between the blob size, 𝜉, and the number of
segments in the blob, gp, is given by Eq. (1.55):

𝜉 ≈ agp
3∕5 (1.55)

The power of 3/5 reflects that the fractal dimension of the real chain is 5/3. Thus,
Eq. (1.55) can be expanded to general chains with fractal dimension D.

𝜉 ≈ agp
1∕D (5.53)

A process similar to what was discussed in Chapter 1 provides us with the fol-
lowing relationship for a strongly stretched polymer chain:

f ≈ kT
a

( R
aN

) 1
D−1 (5.54)

Here, f is the force applied per single chain and corresponds to the nominal
stress, 𝜎, which is the force per unit cross-sectional area in the network. On the
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other hand, the elongation ratio R/aN is not directly correlated to the uniaxial
elongation ratio, 𝜆, of the network; the situation in which all partial chains are
stretched by a factor of 𝜆 is realized only by the isotropic volume change by a fac-
tor of 𝜆3 because the network strands are somewhat compressed in the direction
perpendicular to the stretching direction in the isovolumetric deformation.

To account for this feature, we need to return to the W function. Here, we
assume that the W function of the polymer network has the same scaling as the
neo-Hookean model, which is the simplest model (W ∼ I1). When one assumes
isovolumetric and isotropic deformation, the following equation is obtained:

W (I1) ∼ I1 ∼ (𝜆1
2 + 𝜆2

2 + 𝜆3
2 − 3) ∼ (𝜆2 + 2𝜆−1 − 3) (5.55)

The stress 𝜎 is determined as a partial derivative of W with respect to 𝜆.

𝜎 = 𝜕W
𝜕𝜆

∼ (𝜆 − 𝜆−2) (5.56)

According to this result, the stress is proportional to (𝜆− 𝜆−2) in the region where
the effect of the finite extensibility is negligible. This result is similar to the results
obtained from Eqs. (1.48) and (1.52), which are the scaling rules describing the
extension behavior of ideal and real chains, respectively. When extracting only
the parts of interest from Eqs. (1.48) and (1.52), the following scaling is obtained:

f ∼ R ∼ 𝜆 (5.57)

This equation indicates that the force, f , is proportional to the elongation ratio, 𝜆.
That is, the 𝜆 term for a single chain corresponds to that of (𝜆− 𝜆−2) for a polymer
network. The 𝜆−2 term reflects the correction of the effect of compression in the
perpendicular direction.

As a result, by replacing (R/aN) in Eq. (5.54) with (𝜆− 𝜆−2) and f with 𝜎, the
scaling rule for a single polymer chain is converted to that for a polymer network.

𝜎 ∼
(
𝜆 − 𝜆−2) 1

D−1 (5.58)

Using Eq. (5.58), the stress–strain behavior in the large deformation region can
be predicted based on the fractal dimension of the network strands. Indeed, a
power law was observed in several polymer gel and rubber systems and was well
reproduced with reasonable fractal dimensions [18–20].

5.5 Fracture Behavior of Polymer Gels

In this section, we have discussed the changes in stress under deformation. A
polymer gel cannot be stretched infinitely and breaks with a certain degree of
stretching, which has not been explicitly discussed thus far. Some models, such
as the Gent model and the inverse Langevin model, have the maximum elonga-
tion ratio, 𝜆max, as a parameter, while many models, such as the Mooney model,
do not have this parameter. One of the reasons for the absence of 𝜆max is that
introducing the higher-order terms of I1 and I2 is sufficient for “only reproduc-
ing the stress–elongation curve.” Notably, there are subtle differences between
𝜆max set to reproduce the stretching curve and 𝜆max estimated experimentally as
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Figure 5.12 Stress–elongation curves
of Tetra-PEG gel prepared under the
same conditions (n = 7).
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the breaking point. To capture the nuance, we show the stress–elongation curves
of seven gels fabricated from the same condition (Figure 5.12). The stress–strain
curves are almost identical. Thus, one representative 𝜆max is enough to repro-
duce the curve with a model. On the other hand, the actual fracture points are
scattered. In contrast to𝜆max for reproducing the stress–elongation curve, it is dif-
ficult to specify a value of 𝜆max that indicates at what point the gel breaks, which
is practically important because conventional polymer gels are brittle.

In general, fractures of solid materials can be mainly divided into two groups.
One is called “ductile fracture,” which conventionally shows large deformation
before the fracture. Ductile fracture features a large plastic deformation observed
as a residual strain and a permanent set. Iron is a representative material that
shows ductile fracture. The other is “brittle fracture” in which there is little or
no plastic deformation before the fracture. Glasses or ceramics are represen-
tative materials showing brittle fracture. Another feature of brittle materials is
the large variation in fracture points. Although polymer gels can be substan-
tially deformed, they conventionally show brittle fracture. One of exceptions is
the “double network gel” developed by Gong and Kurokawa, which solved the
inevitable problem of hydrogels. Although we do not mention the details here,
please refer to the papers published by these researchers [21, 22]. Here, we dis-
cuss brittle polymer gels showing 𝜆max values that vary substantially. The mod-
els predicting practical fracture points are completely different from the discus-
sion based on W functions. Hereafter, we introduce the Griffith model and the
Lake–Thomas model as representative models of fracture.

5.5.1 Griffith Model

A fracture in a brittle material can be rephrased as a process creating two or more
new surfaces from one solid with external work. When an external force is applied
to an elastic body with a crack, the crack propagates gradually. During crack
propagation, the strain energy of the elastic body decreases and corresponds to
the surface energy of the newly formed surface. In 1921, Griffith hypothesized
that fracture occurs at the point where the decrease in elastic strain energy and
the increase in surface energy of the newly formed surface are equal [23]. By
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Figure 5.13 Elastic body with a crack
of length L. Cracks propagate along the
x axis.

releasing energy while maintaining the equilibrium between the strain energy and
the surface energy, the crack propagates, resulting in macroscopic destruction.

The conditions for material fracture are determined from the energy needed to
propagate a crack with length, L, by ΔL (Figure 5.13). When the crack propagates
by ΔL, the surface energy of the newly formed surface (Usurf) is represented as
follows:

Usurf = 2𝛾ΔL (5.59)

Here, 𝛾 is the surface energy per unit area, and the coefficient “2” indicates that
two surfaces (upper and lower) are formed. On the other hand, the released elastic
strain energy (Uel) is represented as follows:

Uel =
ΔL2

𝜋𝜎

4E
(5.60)

Here, 𝜎 is the external force, and E is the Young’s modulus. Crack propagation is
achieved when the decrease in the elastic strain energy and the increase in the
surface energy of the newly formed surface are balanced.

dUsurf

dL
=

dUel

dL
(5.61)

The minimum stress required for a crack propagation 𝜎0 is calculated by substi-
tuting Eqs. (5.59) and (5.60) into Eq. (5.61).

𝜎0 =
(

4𝛾E
𝜋L

)1∕2

(5.62)

Griffith mentioned “cracks start to propagate when an external force 𝜎0 is applied
to a brittle material with a crack of length L.”

5.5.2 Lake–Thomas Model

The Griffith model is a model based on thermodynamics, and it is still widely used
today. Although the Griffith model is undoubtedly correct as a basic formula, the
fracture energy of a polymeric material such as natural rubber is much larger
than that predicted by the model. In 1967, Lake and Thomas proposed that the
problem is ignorance of the molecular structure of polymers in the vicinity of
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Figure 5.14 Schematic picture of the Lake–Thomas model.

the crack, and they estimated the fracture energy from “the energy required to
break the partial chain at the crack tip” [24]. The essence of the Lake–Thomas
model is “one cannot stretch only a specific chemical bond in a polymer chain by
macroscopic deformation.”

Here, we consider a situation in which there is apparently a polymer network
in the vicinity of a crack tip (Figure 5.14). There are many network strands in the
plane in which the crack will propagate. Thus, to propagate the crack, all the par-
tial chains crossing the section must be broken. Let us focus on one partial chain
crossing the section. An energy of approximately 400 kJ/mol, which is the approx-
imate binding energy of a single bond, seems to be sufficient. However, now we
simply extend the network strand and thus cannot concentrate the energy only
on certain bonds. Instead, we can only stretch all bonds in the strands uniformly.
Thus, the strand is cleaved when each bond stores an energy equivalent to the
bond energy of the weakest bond, and the weakest bond then breaks; all bonds
must be extended to some extent to break a bond. Based on the preceding dis-
cussion, the energy required to break a strand is represented as NU , where U is
the bond energy of the weakest bond, and N is the degree of polymerization of
a strand. Because typical degrees of polymerization are on the order of 100, the
energy required to break a strand is much higher than that for a bond.

Next, let us expand this view slightly and consider other strands directly con-
nected to the fracturing chain. Similarly, it is also impossible to fully extend only
one strand without influencing strands that are directly connected. It is reason-
able to think that the connected strands are also stretched to some extent. In
reality, the force is most concentrated on the partial chain at the crack tip and
decays as the distance increases. In a region sufficiently far from the tip, the
deformation is the same as that in the bulk. For simplicity, we assume that a uni-
form stress concentration occurs only in a region with a certain length L and that
other regions have the same deformation as that in the bulk. Then, the number
of chains that are ultimately stretched is 𝜈L, which is obtained by multiplying
the number density of network strands, 𝜈, by the displacement length, L. (Note
that the dimensions of cross section are originally divided because it is calculated
per cross-sectional area.) As a result, the energy required to propagate a crack,
T0, is obtained by multiplying the number of network strands that are ultimately
stretched by the energy needed to break a strand.

T0 = (3∕8)1∕2
𝜈LNU (5.63)
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Originally, L is roughly considered as the length of a strand, and the fracture
energy of rubber has been well reproduced. When we assume that the net-
work strand is an ideal chain, the length scales as L ∼ N1/2. Given that
G ∼ 𝜈 ∼ 𝜙/N∼N−1 following the scaling of the elastic modulus (in the case of
rubber, 𝜙 = 1), the following scaling relationship is established:

T0 ∼ 𝜈N1∕2N ∼ N1∕2 ∼ G−1∕2 (5.64)

This scaling suggests that toughness decreases with increasing stiffness. This scal-
ing has been validated experimentally for rubbers [25]. Recently, the exact form
of Eq. (5.63) was validated experimentally for Tetra-PEG gel; L was approximately
the end-to-end distance of a network strand [26, 27].

5.6 Mesh Size Estimated from Elastic Modulus
and Finite Extensibility

We introduce a study investigating the correlation between mesh sizes and finite
extensibilities. In Section 5.6, we introduced a methodology to estimate the mesh
size from the elastic modulus. The estimated mesh size can be used to predict
other physical properties. For example, when the mesh size increases, the exten-
sibility is expected to increase according to the Kuhn model (see Section 1.2.3); in
other words, soft gels are expected to show high extensibilities. If this estimation
is always correct, large deformation behavior can be predicted based on the small
deformation behavior.

Among the methods for estimating the mesh size from the elastic modulus, the
simplest one is using the affine network model (assumption 1).

G = 𝜈kBT (3.15)

By using this equation, the density of network strands 𝜈 (m−3) is estimated from
the elastic modulus. When we assume that “all constitutive polymers act as net-
work strands” (assumption 2), the following equation holds:

𝜈 = c
mmonoNc

NA (5.65)

Here, c (g/m3) is the polymer concentration in the gel, mmono (g/mol) is the
molecular weight per monomeric unit, and NA is Avogadro’s number (mol−1).
According to Eqs. (3.15) and (5.65), Nc (g/mol), which is the average degree of
polymerization of network strands, can be estimated from G.

Assuming that “the network strands behave as ideal chains having monomer
units as segments” (assumption 3), the mesh size (rmesh) can be calculated with
Eq. (5.66):

rmesh = aNc
1∕2 (5.66)

Notably, these three assumptions are fairly ideal and may differ from reality. For
example, if the phantom network model (Eq. (3.35)) is used instead of the affine
network model, the number of network strands in a four-branched network is
estimated to be approximately twice as high. The presence of dangling chains
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is not consistent with assumption 2. Of course, network strands are not always
ideal chains, which is not consistent with assumption 3. Although such problems
exist, this method is often used because of its simplicity. The essential problem
is whether the mesh sizes estimated from the elastic modulus correctly corre-
late with other physical properties, such as extensibility and permeability. In the
following, we introduce a study investigating the correlation between the elastic
modulus and the extensibility.

The authors compared the elastic modulus and the extensibility for a Tetra-PEG
gel. Tetra-PEG gel, which is composed of polyethylene glycol (Tetra-PEG) with
a tetra-armed structure (Figure 5.15), is prepared by mixing solutions of two
Tetra-PEG precursors with mutually reactive end groups. Because many data
have suggested that Tetra-PEG gels have extremely homogeneous network
structures, they are promising model systems for examining theoretical models.
Furthermore, when the Tetra-PEG gel was prepared near c* of the prepolymer,
the elastic modulus corresponds well with the predictions of the tree-like
approximation and the phantom network model (see Sections 3.3.2 and 3.4.2).
By changing the connectivity of the Tetra-PEG gel prepared near c*, at least
assumption 1 (applicability of the phantom network model) holds, and we can
focus on assumptions 2 and 3.

Figure 5.16a shows the elastic modulus, G, as a function of the connectivity,
p, of the Tetra-PEG gel. The connectivity was determined from the reaction
conversion between the ends of the four-armed precursors, which was directly
measured spectroscopically. The reduction of p led to a decrease in G even
though the polymer concentration was constant. According to assumption 2, Nc
can be estimated from G using Eq. (3.35) based on the tree-like approximation.
Figure 5.16b shows the calculated values of Nc as a function of p. Nc increased
by a factor of approximately 3 due to the decrease in p. The classical Kuhn
model predicts that Nc and the maximum elongation ratio (𝜆max) have a scaling
relationship of 𝜆max ∼Nc

1/2. Therefore, based on the previously mentioned
estimation, an increase in Nc likely leads to an increase in 𝜆max.

Next, we experimentally estimated 𝜆max of these gels. Indeed, the direct mea-
surement of 𝜆max is generally difficult because 𝜆max fluctuates greatly among sam-
ples, as discussed in Section 5.5. Therefore, we estimated 𝜆max based on the shape
of the stress–elongation curves. When we assume that network strands behave

Figure 5.15 Schematic illustration of a Tetra-PEG gel.
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as ideal chains and are infinitely stretchable, the stress–strain curve can be rep-
resented by the neo-Hookean model.

𝜎 = G(𝜆 − 𝜆−2) (3.14′)

However, in reality, the lengths of the network strands are finite, and the con-
formation changes from the ideal chain to the stretched conformation along the
stretching direction. As a result, the stress–strain curve deviates upward from
the values predicted using Eq. (3.14′).

Figure 5.17 shows the stress–strain curves of gels with different p. Here,
to ignore the change in elastic modulus and focus on the deviation from
Eq. (3.14′), we normalized the stress by the elastic modulus. In contrast to the
aforementioned prediction, there is no significant difference in the shape of
the stress–strain curves due to differences in connectivity. The elastic modulus
and stretchability are completely decoupled in this system. This result can be
attributed to the failure of assumptions 2 or 3. Because the difference in the chain
conformation cannot explain this breakage, assumption 2 should be discarded,
i.e. not all constitutive polymers act as network strands.
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(a)

(b)

Figure 5.18 (a) Structural changes in a network following strand cleavage and (b) that in a
network in which two neighboring strands are cleaved (black circle, tetra-functional crosslink;
gray circle, tri-functional crosslink; cross, breakage site).

These experiments reproduced the process in which defects were gradu-
ally introduced into a regular network, where assumption 2 is likely to fail.
Figure 5.18a shows a schematic illustration of the structural changes in a
network following strand cleavage. The scission of a strand generates two
dangling chains, and two tetra-functional junctions are converted into two
tri-functional junctions, which can still act as active crosslinks. This event only
decreases the number of elastically effective chains, 𝜈, and does not change Nc.
This conjecture is consistent with the experimental result that the maximum
elongation ratio, which should be a function of the strand length, does not
depend on the connectivity.

Nc increased when defects were further introduced and adjacent strands were
broken, as shown in Figure 5.18b. This discussion is similar to the percolate net-
work model introduced in Section 3.4.1 and corresponds to the region p > 0.75
in the tetra-functional network structure.

As described earlier, when connectivity is relatively high, the strand length does
not change with the introduction of defects and does not affect the extensibility.
This result demonstrates the risks of blind acceptance of the assumption that “all
constitutive polymers act as network strands.” Under this assumption, we tend to
overestimate the value of Nc because the dangling chains, which do not function
effectively in a network, are assumed to function as effective network strands.
Of course, this method is important due to its convenience, and the mesh size
predicted by this method roughly predicts the diffusion behavior of substances
with sizes similar to the mesh size. However, it is also important to know the
limitations of this system.
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Column 5: Linear Viscoelasticity and Nonlinear
Viscoelasticity

Viscoelasticity measurement is a powerful tool for understanding the dynamics
and properties of polymer gels. The viscoelasticity measurement introduces an
anisotropy to the material by strain (or stress) and then observes the recovery
process with a characteristic time, which is related to a molecular motion in the
material. Therefore, the magnitude of applied strain (or stress) is an important
factor, and viscoelasticity is categorized into “linear” and “nonlinear” depending
on the magnitude.

Linear viscoelasticity measurement is a method of observing the viscoelastic
response under a small strain (or stress). Since the applied strain hardly changes
the structure of the material, the energy is relaxed by the pure thermal motion
of constituent molecules. Since the network structure forming the polymer gel
is usually in an equilibrium state and is fluctuated by the thermal energy, the
relaxation process from mechanical perturbation is similar to that from thermal
perturbation. Therefore, in the linear viscoelastic region, there is no difference
in the dissipation between different deformation modes; for example, the same
results are observed even when the strain is changed, and whether the speci-
men is compressed or stretched. Conversely, we can experimentally determine
the linear viscoelastic region as a region where the viscoelastic response does not
change regardless of strains. Thus, in conventional experiments using rheome-
ter, one should start from changing the strain with a constant stress and then
determine the linear viscoelastic region.

On the other hand, in nonlinear viscoelasticity measurements, one observes
the viscoelastic response under large strain (or stress). Since the applied strain
greatly changes the molecular structure and molecular motion in the specimen,
the relaxation process is different from that from thermal perturbation. Under
such circumstances, there is no universal relationship between viscoelastic
responses in different deformation modes; for example, shear and tensile mea-
surements show qualitatively different results. One should take special attention
whether the experimental range is in linear or nonlinear regions.
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6.1 Thermal Motion and Brownian Motion

In solution, solvent molecules move randomly, and their average kinetic energy is
determined by the temperature. Since the motion of the solvent molecules orig-
inates from heat transfer, the motion is called thermal motion. According to the
molecular kinetic theory of gasses, the average velocity (⟨v⟩) of solvent molecules
is expressed as follows when ignoring the interactions between solvent molecules:

⟨v⟩ = (2kBT
m

)−1∕2

(6.1)

where kB is the Boltzmann constant, T is the absolute temperature, and m is the
mass of the molecules. According to Eq. (6.1), the average velocity (⟨v⟩) of water
molecules can be as large as approximately 500 m/s at room temperature. On the
other hand, if the same calculation is carried out for colloidal particles with a
size of 100 nm, ⟨v⟩ is approximately 1× 10−3 m/s, which is 6 orders of magnitude
smaller than that of water. However, for colloidal particles, the actual diffusion
coefficient (D), which is a measure of the dynamics and is roughly proportional to
the average velocity, is only 3 orders of magnitude smaller; the colloidal particles
move much faster than what is predicted by Eq. (6.1).

The concept of the Brownian motion was originally developed to address the
gap between the theory and reality. Because colloidal particles are much larger
than solvent molecules and their kinetics are slow, colloidal particles constantly
collide with the small solvent molecules moving with thermal motion. If these col-
lisions occur uniformly from all directions, the forces will cancel each other out,
and the colloidal particles will stay in their initial position. However, in reality, the
collisions are not uniform, and the colloidal particles are continuously subjected
to imbalanced random forces. The collisions with the small solvent molecules
lead to disordered motion in colloidal particles, called Brownian motion [1].
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6.1.1 Diffusion Coefficient and Relaxation Time

To understand the Brownian motion of colloidal particles, let us first consider
a simple one-dimensional problem in which the particles move randomly by a
distance +a or −a in every constant time interval Δt [2]. Although it is possible
to use a random distance and a random time interval, we leave these parameters
constant to avoid complexity and to help the reader understand the essence of
the motion. Given that the position of a particle at time t is x(t), the displacement
of the particle from t = 0 will be (x(t)− x(0)). The average of the displacement of
many particles (ensemble average) is expressed as follows:

⟨x(t) − x(0)⟩ = h∑
i
⟨ai⟩ = 0 (6.2)

where ai is the movement vector of the ith step, and ⟨⟩ denotes the ensemble
average. Since the direction of travel in each step is random, ⟨ai⟩ = 0, similar to
the conformation of the random coil discussed in Chapter 1. Thus, we again focus
on the mean squared displacement (⟨[x(t)− x(0)]2⟩) instead of ⟨x(t)− x(0)⟩. After
time t, the particle will move h = t/Δt steps, and the mean squared displacement
is expressed as follows:

⟨[x(t) − x(0)]2⟩ = ⟨( h∑
i

ai

)( h∑
j

aj

)⟩
=

⟨ h∑
i

ai
2 +

h∑
j

h−1∑
j≠i

aiaj

⟩

=
h∑
i
⟨ai

2⟩ = a2

Δt
t (6.3)

In this calculation, we use the fact that the mean of two uncorrelated values
is 0 (⟨aiaj⟩ = 0), similar to the conformation of the random coil. As a result,⟨[x(t)− x(0)]2⟩ is proportional to the elapsed time, t, with a proportionality con-
stant of (a2/Δt). The proportionality constant is called a self-diffusion coefficient
or simply a diffusion coefficient (D), and it indicates how easy the particles diffuse
in the solution.⟨[x(t) − x(0)]2⟩ ≡ 2Dt (6.4)

Now, we extend this discussion to three dimensions. Let the position of the par-
ticle at time t be a vector r(t). Since the x, y, and z directions are equivalent, a
three-dimensional problem is the simple expansion of the one-dimensional prob-
lem (Eq. (6.4)).

⟨[r(t) − r(0)]2⟩ = ⟨[x(t) − x(0)]2 + [y(t) − y(0)]2 + [z(t) − z(0)]2⟩ = 6Dt
(6.5)

The diffusion coefficient is the parameter used to quantitatively evaluate the
diffusion of substances for many applications, such as the drying speed of laun-
dry and the release rate of the drugs. For low-molecular-weight substances with
a diameter less than 1 nm, such as oxygen and ethanol molecules, the diffusion
coefficients in aqueous solutions are on the order of 1× 10−9 (m2/s); for typical
proteins such as albumin (Rh = 4 nm), D∼ 5× 10−11 (m2/s); and for polystyrene
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beads (Rh = 50 nm), D∼ 5× 10−12 (m2/s) at room temperature. Another parame-
ter for characterizing diffusion is the relaxation time, which is defined as the time
to travel a distance equal to its size (R).

𝜏 ≡ R2

6D
(6.6)

6.1.2 Diffusion and Migration

While diffusion is a random motion caused by the thermal motion of surround-
ing small molecules, migration is a directive particle motion caused by external
forces, such as electric, magnetic, and gravity fields. When an external field is
applied, particles in a solution are accelerated and move along the direction of
the external field. On the other hand, moving particles experience friction with
the solvent molecules depending on their velocity. Thus, at a certain velocity (ter-
minal velocity), the external force and the friction force balance, and the particle
motion reaches equilibrium. In particular, with a sufficiently small external force,
the particle moves linearly in response to the external force (F), and the terminal
velocity (v) is proportional to the applied force [3].

v ≡ 𝜇F (6.7)

where the proportionality constant 𝜇 is called mobility, which is a measure of the
ease by which particles migrate in the medium. The reciprocal of 𝜇 is the friction
coefficient, 𝜁 , which is a measure of the difficulty by which particles migrate in
the medium.

𝜁 ≡ 1
𝜇

(6.8)

According to the fluctuation–dissipation theorem by Einstein, the mobility is
related to the diffusion coefficient as follows:

D = 𝜇kBT =
(

1
𝜁

)
kBT (6.9)

Einstein’s relation indicates that the friction on a particle under an external force
is the same as that on the particle when the particle undergoes Brownian motion.

6.2 Diffusion in Dilute Polymer Solutions

6.2.1 Diffusion of a Hard Sphere

Thus far, we have discussed the basics of diffusion and migration, which are inde-
pendent of particle size and shape. Here, we focus on the details and consider the
diffusion of a rigid sphere. In the case of a large rigid sphere in a dilute solu-
tion such as a colloidal suspension, the diffusion follows Stokes’ resistance law;
the rigid sphere moving at a velocity v is subject to friction force (f ) as shown as
follows [1]:

f = 6𝜋𝜂0Rhv (6.10)



140 6 Mass Transport in Polymer Gels

where 𝜂0 is the zero-shear viscosity of the solvent and Rh is the hydrodynamic
radius of the rigid sphere. The hydrodynamic radius is the radius of a hydrody-
namically equivalent sphere of the diffusing substances. For a rigid particle, the
hydrodynamic radius is the same as the particle radius. When solvent molecules
or counterions are absorbed on the particle surface, the hydrodynamic radius
becomes larger than the particle radius. Since the thickness of the adsorption
layer on the particle surface does not depend on the particle size, when the parti-
cle is small (<10 nm), the effect of the layer is large, and the hydrodynamic radius
is much larger than the particle radius.

When the velocity of the particles reaches the terminal velocity, the friction
force and the external force are balanced (F = f ). In this equilibrium, the following
relation holds between the diffusion coefficient and the hydrodynamic radius of
the particles, according to Eqs. (6.7), (6.9), and (6.10):

D =
kBT

6𝜋𝜂0Rh
(6.11)

This formula is derived from Stokes’ law and Einstein’s relation and is called
the Stokes–Einstein equation. Equation (6.11) is commonly used to estimate
the hydrodynamic radii of particles from their diffusion coefficients, which can
be measured by dynamic light scattering and other techniques. Notably, the
Stokes–Einstein equation assumes that the particles are much larger than the
solvent molecules and that there are no particle–particle interactions. Therefore,
when the size of the particles and the solvent molecules are similar or the
particle concentration is relatively high, the Stokes–Einstein equation breaks.
Practically, to estimate the true hydrodynamic radius, a series of measurements
must be performed at low colloidal concentrations and D is then extrapolated to
a concentration of 0.

6.2.2 Rouse Model

The Rouse model was the first model developed to describe the diffusion behav-
ior of polymers. The model regards a polymer as a series of N beads connected
by N − 1 springs. There are no hydrodynamic interactions between the beads,
and each bead is subject to the same friction from solvent molecules [4]. Thus,
the friction coefficient of the entire polymer (𝜁R) is equal to the sum of the
friction coefficients of the individual beads (𝜁0), 𝜁R = N𝜁0. Based on Eqs. (6.8)
and (6.9), the diffusion coefficient is inversely proportional to the number of
beads in the polymer.

D =
kBT
N𝜁0

∼ N−1 (6.12)

Figure 6.1 shows a conceptual illustration of the Rouse model, in which the
solvent molecules pass through the polymer and interact with each bead
independently. Regardless of the conformation of the polymer (see Chapter 2),
D is always represented by Eq. (6.12).

The Rouse model fails to reproduce the diffusion in dilute polymer solutions [5].
This discrepancy suggests that the hydrodynamic interactions of a polymer coil
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Figure 6.1 Conceptual illustration of
the Rouse model. Solvent molecules
flow through the polymer chain.

Solvent flow

Polymer motion

are essential in dilute solution. On the other hand, in concentrated polymer solu-
tions, the polymers mutually penetrate each other, and the hydrodynamic interac-
tions are screened out. In this case, the Rouse model reproduces the dynamics of
polymers well. However, in a concentrated solution, the effects of entanglement
must also be considered. When the entanglement is not negligible, “reptation”
dominates the diffusion process.

6.2.3 Zimm Model

The Zimm model was also developed to describe the diffusion behavior of poly-
mers in solution [4]. In the Zimm model, polymers are considered as a series
of beads and springs similar to the Rouse model. One difference is the presence
of hydrodynamic interactions between beads, which are not considered in the
Rouse model. As a result of the hydrodynamic interactions, solvent molecules
inside the polymer coil are trapped and diffuse along with the polymer. Based on
this concept, the polymer can be regarded as a rigid sphere consisting of polymer
chains and solvent molecules (Figure 6.2).

Following the Zimm model, we obtain the following relations for dilute polymer
solutions:

D =
kBT

6𝜋𝜂Rh
∼

{
N−1∕2

, for ideal chain
N−3∕5

, for real chain
(6.13)

Figure 6.2 Conceptual diagram of the
Zimm model. Solvent molecules can
only pass around the outside of the
polymer chains.

Solvent flow

Polymer motion
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These equations well reproduce the diffusion behavior of polymer chains, espe-
cially in dilute solutions [5]. Notably, in the Zimm model, the N-dependence of
D changes with the quality of the solvent because the size of the polymer scales
with N as R∼N−3/5 in good solvent and R∼N−1/2 in 𝜃 solvent.

6.3 Diffusion in Semidilute Polymer Solutions
and Polymer Gels

In a semidilute solution, the polymers penetrate into each other, and the poly-
mer solution can be treated as a transient and pseudonetwork structure that
changes over time (see Chapter 2). On the other hand, polymer gels with covalent
crosslinkers have permanent and definite network structures. Substances such
as colloid particles, drug molecules, and linear polymer chains diffusing inside
these networks interact with the network in various ways, including direct col-
lisions and hydrodynamic interactions. These interactions hinder the diffusion
of substances. Although numerous models have been developed to describe the
hindrance, each model can only reproduce a small portion of the experimental
results. Thus, even now, there is no clear molecular picture to predict diffusion
in networks [6, 7].

Here, we focus on five popular models: (i) the obstruction model that treat
the network structure as real obstacles, (ii) hydrodynamic models that ignore the
direct interactions with networks and only consider the hydrodynamic interac-
tions, (iii) free volume models that assume that substances diffuse through free
volumes of solvent molecules and polymers in the network structures, (iv) rep-
tation models that consider that guest polymer chains move through the tubes
formed by polymer networks, and (v) entropic trapping models that assume that
the guest polymer chains jump between the cages formed by polymer networks.
The first three models were originally designed for the diffusion of rigid particles,
and the latter two models are for polymer chains. As mentioned in the Zimm
model, when the guest polymer chain is sufficiently smaller than the mesh size,
the polymers can be regarded as rigid spheres; thus, the first three models are
also useful when the guest polymer chains are small.

6.3.1 Obstruction Model

One of the most intuitive ways of considering diffusion in a polymer network is
regarding the polymer network as a real obstacle for diffusing substances. The
diffusing substances are only allowed to move to the next position when they find
a pore larger than their own radius. Many models have been developed based
on this concept, such as the Maxwell–Fricke model and the Mackie–Meares
model. Among these models, the most famous model was proposed by Ogston
[8] (Figure 6.3).

The Ogston model simplifies the network structure and treats it as an assembly
of rigid rods dispersed randomly in the solution. These rigid rods are immobilized
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Figure 6.3 Conceptual diagram of the
Ogston model.

in space. In the solution, the probability (f (d)) of finding another rod for the first
time at a distance d from the first rod found is given by Eq. (6.14):

f (d) = 4𝜋zLld exp(−2𝜋zLl(d + Ls)2) (6.14)

where z is the number density of rods, Ll is the length of the rods, and Ls is the
width of the rods. The probability of a particle finding a pore larger than itself
(P(R)) in the network is equal to the integral of Eq. (6.14) from R to infinity.

P(R) = ∫
∞

R
f (d)dd = exp

[
−2𝜋zLlLs

2
(

R
Ls

+ 1
)2

]
= exp(−K𝜙) (6.15)

where R is the radius of the particle, K (=2𝜋(R/Ls + 1)2) is the retardation coeffi-
cient, and 𝜙 (=zLlLs

2) is the polymer volume fraction. Generally, in obstruction
models, the diffusion coefficient is considered to be proportional to P(R).

D = D0P(R) = D0 exp(−K𝜙) (6.16)

where D0 is the diffusion coefficient of the particles in a pure solvent without
any obstacles. The Ogston model was later generalized for obstacles of different
shapes.

K ∼

⎧⎪⎪⎨⎪⎪⎩

(
R
Ls
+ 1

)1
, for planes(

R
Ls
+ 1

)2
, for rods(

R
Ls
+ 1

)3
, for spheres

(6.17)

According to the definition, P(R) indicates the available volume in the network
for particles. Therefore, it is natural to consider P(R) as the partition coefficient
of particles between the gel and solvent; the concentration of particles in the
gel should be P(R) times less than that in the adjacent pure solvent if there are
no additional chemical interactions between the network and particles. Because
both the diffusion and partition coefficients are dependent on P(R), the diffusion
process has a strong correlation with the partition process.
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6.3.2 Hydrodynamic Model

In hydrodynamic models, the network structure indirectly interacts with the par-
ticles via solvent molecules. In this concept, the network structure itself is not an
obstacle to the particles. In most hydrodynamic models, polymer networks are
simplified as rods or connected beads of which roles are just to slow the flow of
the solvent molecules. This hydrodynamic effect results in a substantial increase
in the local viscosity and a retardation in the diffusion of the particles.

A representative model based on hydrodynamic interactions was proposed by
Cukier [9]. Cukier assumed polymer chains in the network to be connected by
the solid spheres and estimated the total friction exerted by the rigid spheres in a
fluid. According to Stokes’ law, the friction coefficient (𝜁 a) exerted by one sphere
is as follows:

𝜁a = 6𝜋𝜂0a (6.18)

where a is the hydrodynamic radius of a sphere. Applying a Rouse model-like
picture, the total friction coefficient is a simple sum of the friction coefficients of
each component.

𝜅
2 =

na𝜁a

𝜂0
(6.19)

where 𝜅 is called the screening constant, which is a measure of hydrodynamic
interactions, na is the total number of spheres constituting the network, and 𝜂0 is
the viscosity of the pure solvent. By simply assuming the number of monomers is
proportional to the number of spheres, 𝜙 is proportional to na, and a scaling rela-
tion of 𝜅 ∼𝜙1/2 is obtained. On the other hand, one can assume that the mesh or
blobs in the network generate hydrodynamic interactions, instead of monomers.
By using the concept of blobs, Freed and Edwards derived a scaling relation 𝜅 ∼𝜙
for the ideal chain, and de Gennes derived 𝜅 ∼𝜙3/4 for real chains [9].

Although it is difficult to calculate the frictional coefficient (𝜁D) between
the diffusing substances and the network even with the previously mentioned
assumptions, it is most likely approximated by an exponential function as shown
as follows:

𝜁D

𝜁D0
= exp(𝜅R) (6.20)

where 𝜁D and 𝜁D0 are the friction coefficients of diffusing particles in the poly-
mer network and in pure solvent, respectively. According to Einstein’s expression
(Eq. (6.9)), the diffusion coefficient has a reciprocal relationship with the friction
coefficient. Therefore, the preceding equation can be rewritten as follows:

D
D0

= exp(−𝜅R) (6.21)

As a consequence, a similar expression for the obstacle model can be derived.
However, notably, the retardation here originates from the indirect hydrody-
namic interactions.
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Figure 6.4 Conceptual diagram of the
free volume model. Since the solvent
molecules thermally fluctuate, the
spatial distribution of the free volume
varies with time.

Diffusing
particle

Solvent
molecules

6.3.3 Free Volume Model

Free volume is a vacuum that exists between molecules where no substance
exists. It might sound weird to image such space in a solution; however, for
example, even in a metallic crystal with a hexagonal close-packed structure,
the material has 26% voids, i.e. vacuum. There are free volumes in a solvent, a
polymer solution and even in a polymer melt. In a two-component system such
as a polymer solution, both the solvent and polymer have free volumes. The free
volume of a material is defined as the difference between the occupied volume
at a given temperature and that at absolute 0. Because the molecules always
undergo thermal motion at finite temperatures, the local free volume between
molecules changes over time. Free volume models assume that a diffusing
substance can leave its initial position only when it finds a free volume larger
than itself (Figure 6.4). Notably, free volume models depict a completely different
picture from the obstacle models and hydrodynamic models, and particles are
considered to diffuse through the region “occupied by the solvent.”

The probability of finding a free volume with a size larger than d, P(d), in a pure
solvent is expressed as follows by Cohen and Turnbull [6]:

P(d) = A exp
(
−xd
Vf

)
(6.22)

where A and x are constants and V f is the sum of the free volumes in the solu-
tion. Fujita assumed the mobility of particles with size R in a pure solvent to be
proportional to P(R) as 𝜇∼P(R) and estimated the diffusion coefficient using the
Einstein equation.

D ∼ AkBT exp
(
−xR
Vf

)
(6.23)

Yasuda et al. later extended this idea to polymer solutions. Since the free volume
in a polymer solution is influenced by both the solvent and polymer chains, the
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total of free volume in the system is rewritten as follows:

Vf = (1 − 𝜙)Vfs + 𝜙Vfp (6.24)

where V fs and V fp are the free volumes of pure solvent and pure polymer, respec-
tively. When the fraction of free volume from the solvent molecules is much larger
than that from the polymer chains, the total free volume can be approximated as
V f ≈ (1−𝜙)V fs. By using this approximation for Eqs. (6.23) and (6.24), the dif-
fusion coefficient of a substance in the presence of the polymer solution can be
derived as shown.

D
D0

= exp
(
− xR

Vfs

(
𝜙

1 − 𝜙

))
(6.25)

where D0 is the diffusion coefficient in a pure solvent, which is equal to
exp(−xR/V fs). In free volume theory, the substances are assumed to diffuse
through the free volume of solvent molecules. Although the spatial distribution
of free volumes derived from solvent molecules changes with time due to thermal
motion, the average size of the free volume should be comparable to the size
of the solvent molecules. Therefore, free volume models cannot be applied to
molecules much larger than solvent molecules (e.g. proteins and polymer chains).

6.3.4 Reptation Model

All the models introduced so far assume that the diffusing substances are rigid
bodies. Low-molecular-weight substances, proteins, colloid particles, or small
guest polymers are suitable substances for these models. However, for large poly-
mer chains that entangle with the surrounding polymer networks, e.g. a polymer
chain in a polymer melt or gel, the diffusion process is predicted to have qualita-
tive differences. Indeed, some experiments have found that large guest polymer
chains diffuse in a polymer network much faster than predicted by the previ-
ously mentioned models. The diffusion coefficient was a power law relation with
respect to the molecular weight of the guest chains rather than an exponential
relation. de Gennes proposed a completely different picture; the polymer chains
do not diffuse as a rigid sphere, but reptate in the network like snakes [3].

In the reptation model, a guest polymer chain is constrained by a virtual tube in
a polymer network. The guest polymer chain is allowed to escape only from the
ends of the tube (Figure 6.5). Although the ends of the polymer chain can freely
move to new positions, as soon as the head moves, the tube is elongated to cover
the head, and the remaining part of the chain is only allowed to follow the trajec-
tory of the head. In this model, the thickness and the length of the tube are the key
parameters for determining the diffusion coefficient of the guest chain. Because
the chain moves along the tube, all the segments of the chain experience friction
from the wall of the tube; the diffusion is treated using the one-dimensional Rouse
model along the tube. Therefore, the mobility along the tube (𝜇t) is inversely pro-
portional to the chain length, and the diffusion coefficient along the tube (Dt) is
obtained based on the Einstein equation.

Dt = 𝜇tkBT ∼ N−1 (6.26)
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Figure 6.5 Conceptual diagram of the
reptation model. The black dot is a
crosslinking point or entanglement
point, and the chain is constrained from
a pseudotube made by these
crosslinking points, and movement
along the tube is permitted.

The subscript “t” denotes the motion along the tube. The relaxation time is given
by Eq. (6.27):

𝜏t ≃
L2

Dt
∼ N3 (6.27)

where L is the tube length, which is proportional to the chain length.
Now we are ready to discuss diffusion in three dimensions. Because the guest

chain has a random coil conformation, it is natural to assume that the constraint
tube also has a random coil conformation. However, there should not be any
difference in the relaxation time of the three-dimensional and one-dimensional
systems because the relaxation time is defined as the time to move a distance
the size of the guest chain. Therefore, the relaxation time of three-dimensional
diffusion remains as shown.

𝜏 = 𝜏t ∼ N3 (6.28)

If R is the typical length (e.g. end-to-end distance) of the tube in three dimensions,
the diffusion coefficient can be derived from the relaxation time as follows:

D ≃ R2

𝜏

∼

{
N−2

, for ideal chain
N−1.8

, for real chain
(6.29)

Here, Eqs. (1.3) and (1.49) are used to derive the N-dependence of the end-to-end
distance of the ideal chain and the real chain. The reptation model reproduced the
observed N-dependence of a guest chain in a concentrated polymer solution and
a polymer melt. Notably, the reptation model is the only model predicting a power
law form of the N-dependence of the diffusion coefficient among the five major
models introduced in this section; only the reptation model leads to a qualitatively
different result from other models. To further improve the reptation model, the
effects of dissociation and reconstruction of the tube were taken into account in
the constraint release model, and the fluctuation of the tube length by thermal
fluctuations was taken into account in the reptation with the fluctuation model.
All these models predict a power law relation between the diffusion coefficient
and the chain length [2].

6.3.5 Entropic Trapping Model

Finally, we introduce the entropic trapping model [10]. In this model, the poly-
mer network is approximated as a series of pores connected by narrow paths
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Figure 6.6 Conceptual diagram of the
entropic trapping model.

(Figure 6.6). The guest chain is smaller than the size of the pores but larger than
the paths. Thus, to diffuse in the polymer network, the guest chain must pass
through the small paths. When the chain stays in the paths, the conformational
entropy of the chain decreases, leading to an entropic barrier to chain diffusion.

Given that the partition coefficient (P) of the chains in between the pores and
the paths follows the Boltzmann distribution, P is represented using the differ-
ence in the free energies of the chain in the two spaces (ΔF).

P =
𝜙small

𝜙bulk
∼ exp

(
− ΔF

kBT

)
a

𝜙 = 𝜙small + 𝜙bulk (6.30)

𝜙 is the total polymer volume fraction of the guest chain, 𝜙small and 𝜙bulk are
polymer volume fractions of the chain contained in the path and the pore, respec-
tively. Although Eq. (6.30) holds only when the polymer chain is smaller than
both the path and pore, we neglect these details and use Eq. (6.30) to illustrate
the concept of the entropic trapping model.

When we accept the proportionality between the partition and diffusion coef-
ficients, the following expression is obtained:

D
D0

= P = exp
(
− ΔF

kBT

)
(6.31)

ΔF is discussed by Casassa for ideal chains and by Daoud and de Gennes for real
chains. Letting dc be the typical size of the narrow paths, one obtains ΔF ∼Ndc

−2

for ideal chains and ΔF ∼Ndc
−5/3 for real chains. Muthukumar further developed

this discussion and performed several simulation studies with various spaces.
Because it is difficult to correlate the pores and paths with substructures in a real
polymer network, we cannot quantitatively compare the entropic trapping model
with the experimental data. The entropic trapping model has been used to explain
scalings with a much stronger exponent (D∼N−2–N−4) than that of the reptation
model, which is often experimentally consistent with strongly entangled systems.
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Column 6: Effects of Mesh Sizes on Mass Transport

The mesh size of gel is an intuitive and important parameter for predicting mass
transport in gels. Indeed, most of the models of mass transport introduced in
this chapter are built based on “mesh size.” Although there are several methods
to estimate the mesh size, there is no clear answer yet.

Figure 6.7a shows a simplified polymer network found in common textbooks
and papers as well as a polymer network slightly closer to reality. Although no one
has observed the network structure of a gel, one may understand the illustration
(Figure 6.7b) is more realistic by considering that the network strands are random
coil-like and that a gel is a semi-diluted system. What is the mesh size imagined
from such a picture? A mesh size estimated from a molecular weight of network
strand, a blob size, or a mesh size estimated from elastic modulus?

What we know at the present time is that important parameters depend on
the size of diffusion molecules (see Chapter 13). According to the previous
papers, the diffusion of small molecules (e.g. water molecules) is determined
only by polymer concentration (or blob size), and there is negligible influence
of crosslinking. When the molecular weight of the diffusion molecule reaches
about 1000 g/mol, the influence of the crosslinks becomes apparent, showing
the obstacle model-like behavior [11]. With further increase in molecular
weight, both the reptation-like and obstacle-like behaviors are observed, and
the polymer concentration and the crosslinking density independently influence
the diffusion. Therefore, it seems to be difficult to discuss mass transport with a
single concept of mesh size [12, 13].

(a) (b)

Figure 6.7 Schematic pictures of polymer networks: (a) too simplified version and (b) more
realistic version.
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7.1 Ideal Polymer Network

A polymer gel consists of a three-dimensional polymer network swollen in
solvent and is applied to various products, such as contact lenses, adhesion bar-
rier, and soil modifiers. For practical applications, independent control of their
various physical properties, such as gelation time, stiffness, toughness, stretcha-
bility, swelling, mass transport, and degradation, is required. However, simulta-
neously establishing all the properties in the required range is difficult because
of the uncontrollability stemming from the heterogeneous nature of the polymer
network [1–3]. The heterogeneity even hinders experimental verification of the
theories predicting the physical properties and makes it impossible to understand
the physics of polymer gels at the molecular level. The challenge in understand-
ing the nature of polymer networks has a long history, and many attempts have
been made to develop an ideal polymer network free from any heterogeneity
[4–8]. Hild proposed four requirements for an ideal polymer network [4]:

(i) The lengths of all network strands should be identical.
(ii) The functionality of crosslinking points should be constant throughout the

entire network.
(iii) The conformation of the network strands should obey Gaussian statistics.
(iv) The network should be homogeneous macroscopically as well as micro-

scopically.
Thus, deviations from this definition are regarded as heterogeneities:
heterogeneous distributions in strand length, network strands, and
functionality and abnormal statistics of network strands. Notably, these
requirements are for only network structures characterized by chemical
crosslinks and ignore the other features of the polymer network, i.e. trapped
entanglement between network strands. Because trapped entanglements
are introduced in an uncontrolled manner and are difficult to quantify, the
trapped entanglements should be regarded as heterogeneities as well. Thus,
we add the following requirement:

(v) The network strands should not entangle with each other.

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.



154 7 Tetra Gel as a Near-Ideal Polymer Network

(a)

(b)

A A

A

A

A

A

B
B

B
B

Self-biting reaction
(loop)

Cannot be formed

Redundant connections

B

B

B

B

Figure 7.1 Heterogeneities formed in (a) end-crosslinking and (b) crosslink coupling.

One of the strongest rationales for this requirement is that most of the basic
theories model a simple polymer network formed by chemical crosslinks and do
not consider the effect of trapped entanglements.

A classic model network is synthesized from a monodisperse linear prepoly-
mer with functional groups on both ends and a multifunctional crosslinker
(Figure 7.1a and 7.2a) [4, 6]. The functional groups of the prepolymer react
with those of the crosslinker to form a network structure. Notably, in general,
a solvent was not used. The monodispersity of the prepolymer contributes to
(i) the narrow distribution in strand length, and the defined functionality of the
crosslinker contributes to (ii) the well-defined functionality of the crosslinks. In
addition, (iii) the structure of polymers in a polymer melt generally obeys the
Gaussian distribution [7, 9]. When the two components are mixed homoge-
neously, requirement (iv) may be satisfied. The only problem with this method
is the deviation from requirement (v); the prepolymers strongly entangle under
such a condensed condition [7, 9]. Indeed, it is expected that the contribution
of trapped entanglements to physical properties is expected to be comparable
to or to surpass that of chemical crosslinks, masking the effect of the chemical
crosslinks. Therefore, suppressing the entanglements is important for the
fundamental understanding of polymer networks.

Dilution is the simplest method to suppress entanglements, and a polymer
network containing a diluent is called a polymer gel [9–11]. By definition, when
the polymer solution is diluted below the overlap concentration of the polymer
(c*), the entanglements between polymers are eliminated. On the other hand,
the coexistence of a diluent brings about drawbacks related to requirements
(ii) and (iii) (Figure 7.1a). The intramolecular reaction is more likely to occur
in the diluted system than in the concentrated system, resulting in the forma-
tion of ineffective or redundant connections [12–14]. Regarding mechanical
properties, these imperfect connections are expected to make the mechanical
properties lower than those expected from perfect connections; in particular, the
self-biting loop is never stretched by any deformation and does not contribute
to the mechanical properties. Thus, imperfect connections decrease the net
functionality of the crosslinks, resulting in deviation from requirement (ii). In
addition, the coexistence of a diluent changes the conformation of the polymer
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chain, resulting in deviation from requirement (iii). However, when a 𝜃-solvent
for the polymer is used, the polymer chain adopts an ideal conformation,
meeting requirement (iii). Therefore, the inevitable difficulty in this design lies
in requirement (ii). Thus, a molecular design that reduces imperfect connections
is key to developing a model polymer network with a diluent.

7.2 Tetra-PEG Gel

Recently, we have developed a molecular design that effectively reduces
imperfect connections (AB-type crosslink coupling, Figure 4.1b) [1]. In the
coupling process, two mutually reactive tetra-functional polyethylene glycols
(Tetra-PEGs) react with each other in a solvent. This molecular design includes
three key aspects to suppress the heterogeneity. First, compared with those in
conventional model networks, the possible intramolecular connections in our
design are limited, resulting in a drastic reduction in the number of imperfect
connections. In particular, the self-biting loop, which does not contribute to the
elasticity, cannot be formed in this design. Second, the polymer concentration
is set near the overlap concentration of Tetra-PEG to suppress entanglements.
Third, the reaction rate is tuned to allow the mutually reactive Tetra-PEGs to be
mixed homogeneously. Compared with the design of conventional hydrogels,
this molecular design realizes high reaction conversion values (∼95%) and
strongly suppresses the heterogeneity [1, 2, 15–17]. Thus, Tetra-PEG gel is
currently one of the most promising candidates for a model network system. In
the following Chapters 8–17, I briefly present the structure of Tetra-PEG gel and
discuss the following physical properties: gelation, stiffness, toughness, stretch-
ability, swelling, mass transport, and degradation. Because most of the theories
are explained in the previous Chapters 1–6, I put a special focus on experiments
and comparisons between experimental results and theoretical predictions.
Throughout the discussion, I attempt to clarify the current understanding of
polymer gels.

7.3 Structure Tuning of Tetra-PEG Gels

Tetra-PEG gel is formed by Tetra-PEGs with mutually reactive functional groups;
one combination is thiol (SH)-terminated and maleimide (MA)-terminated
Tetra-PEGs [18], and another combination is amine (NH2)-terminated and
activated ester (OSu)-terminated Tetra-PEGs [1]. Based on our previous works,
different end functional groups do not strongly influence the gel structure or
properties. A slight difference in swellability is observed, most likely due to
the difference in hydrophobicity of the resultant linkages between Tetra-PEGs.
Although hydrolysis of the OSu group decreases the reaction conversion (p)
in the latter combination, the reaction conversion can be increased up to
90% by tuning the reaction condition properly [15]. These differences can be
included in the analysis by tuning 𝜒 and p according to Sections 3.4 and 4.2.
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Figure 7.2 Schematic illustrations of (i) Conventional Tetra-PEG gels, (ii) a bimodal Tetra-PEG
gel, (iii) a conversion-tuned Tetra-PEG gel, and (iv) a fraction-tuned Tetra-PEG gel.

Therefore, different end functional groups do not qualitatively influence the
physical properties of the gels. In the following, wherein we do not focus on
the different functional groups, mutually reactive Tetra-PEG prepolymers are
termed Tetra-PEG-A and Tetra-PEG-B.

Basically, one can control the structure of Tetra-PEG gels by tuning the molec-
ular weights and concentrations of the Tetra-PEG prepolymers. Representative
variations in Tetra-PEG gels include the following: (i) conventional Tetra-PEG
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gel [1, 19], (ii) bimodal Tetra-PEG gel [20], (iii) conversion-tuned Tetra-PEG gel
[21], and (iv) fraction-tuned Tetra-PEG gel (Figure 7.2) [22]:

(i) Conventional Tetra-PEG gels are made from equimolar amounts of
Tetra-PEG-A and Tetra-PEG-B with the same molecular weights. Con-
ventionally, the molecular weights of Tetra-PEGs (Mw) are tuned from 5,
10, and 20–40 kg/mol, and the resultant gels are named 5k, 10k, 20k, and
40k Tetra-PEG gels, respectively. Because the molecular weight of an arm
of Tetra-PEG is one-fourth of the entire molecular weight, the molecular
weight of the resultant network strand is half of the molecular weight of
Tetra-PEG. For example, the 10k Tetra-PEG gel has a network strand with
a molecular weight of 5 kg/mol. The initial polymer volume fraction (𝜑0)
is another parameter in conventional Tetra-PEG gels and mainly governs
the number density of network strands (𝜈) and crosslinks (𝜇). Notably,
the molecular weight and number density of the network strands, which
often strongly correlate with each other, can be independently tuned in this
design.

(ii) Bimodal Tetra-PEG gels have a bimodal distribution in strand length. To
introduce this bimodality, one needs to mix three kinds of Tetra-PEGs.
When one mixes 5k Tetra-PEG-A, 20k Tetra-PEG-A, and 5k Tetra-PEG-B,
the resultant polymer network has strand lengths of 2.5 and 6.25 kg/mol.
By tuning the ratio between 5k and 20k Tetra-PEGs while maintaining the
equimolar condition between the A and B functional groups, one can tune
the ratio of bimodal network strands.

(iii) Conversion-tuned (p-tuned) Tetra-PEG gels have a controlled fraction of
connected arms (p). To tune p, Tetra-PEG–OSu is used. Tetra-PEG–OSu
hydrolyzes in aqueous environments and consequently loses its reactivity
with Tetra-PEG–NH2. Thus, one can tune p by using partially hydrolyzed
Tetra-PEG–OSu and Tetra-PEG–NH2. The tuning of p is expected to have a
minimal effect on the polymer network structure; it should just connect the
arm ends in the system while maintaining the polymeric species. Using this
control scheme, one can change only 𝜈 and 𝜇 without changing 𝜑0 or Mw.
Notably, the reaction between A and B is complete; p-tuned Tetra-PEG gels
are obtained as the “equilibrium” of the reaction. A p-tuned Tetra-PEG gel
with p = p1 can be considered a replica of a conventional Tetra-PEG gel at a
reaction conversion of p1, which is a point in a “dynamic” process. This dif-
ference in state can differentiate these two gels, although we have not clearly
observed this differentiation in our experiments.

(iv) Fraction-tuned (r-tuned) Tetra-PEG gels are another system with a con-
trolled p. In this system, one mixes Tetra-PEG-A and Tetra-PEG-B under
unequal molar conditions indicated by the ratio of Tetra-PEG-A to total
Tetra-PEGs (r). Assuming a complete reaction between A and B, p = 2r
(r< 0.5). Although this control scheme is experimentally easier than the
approach based on p-tuned Tetra-PEG gels, it features a complication
related to the distribution of connections. In the p-tuned system, con-
nections distribute homogeneously, while connections in the r-tuned
system concentrate near the minor species. This difference is quantitatively
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predicted by the Bethe approximation (Section 3.4.2). Based on the Bethe
approximation, these systems have negligible differences in the region
p> 0.7, while the deviation increases with a decrease in p. The deviation
is maximum at the gelation point: for p-tuned system gels, the gelation
point is at p = 1/3, and for r-tuned system gels, the gelation point is
at p = 0.19.
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8.1 Determination of Sol–Gel Transition by Rheometry

As discussed in Chapter 3, one can determine whether a system of interest is
sol or gel by means of rheology. We tuned the fraction of a Tetra-PEG prepoly-
mer (r) while maintaining the polymer molecular weight and concentration and
observed the gelation process. Figure 8.1 shows the 𝜔-dependence of G′ and G′′

for mixtures of Tetra-PEG prepolymers at various r values [1]. At a low r (r< rc)
far from stoichiometry, the system showed terminal relaxation behavior, G′ ∼𝜔2

and G′′ ∼𝜔1, suggesting that the system is a liquid. With an increase in r, both
slopes decreased and eventually became the same at a critical point (r = rc), which
is the gelation point, according to the Winter–Chambon criterion [2]. After the
gelation point (r> rc), G′ became larger than G′′ and shows a plateau at low
frequencies. This behavior indicates that the system is fully percolated and the
system is in the gel state.

8.2 Phase Diagram

According to the Winter–Chambon criterion [2], we estimated the critical gela-
tion ratios (rc) at different polymer volume fractions (Figure 8.2) [1]. Circles and
crosses indicate gel and sol, respectively, and the sol–gel transition point (rc) is in
a interstice between the circles and crosses. The critical molar ratio (rc) increased
with a decrease in 𝜙0 and approached stoichiometry (r = 0.50). This result sug-
gests that higher reaction conversion is required for percolation in a more dilute
system.

To discuss the exact reaction conversion at the critical gelation point (pc), the
reaction conversion must be measured. We performed 1H NMR measurements
and confirmed that approximately 95% of Tetra-PEG–OSu present in the
solution reacts with excess Tetra-PEG–NH2, regardless of 𝜙0. Here, it should
be noted that NMR cannot be applied to the gel system because the diffusion
of the chains is restricted by crosslinking. Thus, the values of pc are estimated

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.
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from the extrapolation of each set of sol data with the same 𝜙0. Figure 8.3 shows
the concentration dependence of pc [1]. Here, the polymer volume fraction (𝜙0)
is normalized by the overlap volume fraction (𝜙*). The value of pc decreased
with an increase in 𝜙0/𝜙*, reflecting the difficulty in gelation at a low 𝜙0/𝜙*.
In our system, the lowest concentration at which the gel was formed (critical
concentration) was approximately 𝜙*/5. This result indicates that a gel can be
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formed far below the overlap concentration of the prepolymers. We further
discuss the gelation in the dilute region in Chapter 14.

Here, we compare the experimental phase diagram with the phase diagram
predicted by site–bond percolation model (see Section 3.6.2). Monte Carlo sim-
ulations of site–bond percolation in 2D and 3D lattices provided the empirical
relationships between the fraction of occupied sites (ps) and the fraction of
connected neighbor sites (pb) as [3]

log ps

log ps
∗ +

log pb

log pb
∗ = 1 (8.1)

where ps* and pb* are the critical fractions in the pure site and bond percolations,
respectively. In the case of a three-dimensional diamond lattice, ps* = 0.43, and
pb* = 0.39 [4]. By definition, ps* seems to correspond to 𝜙0/𝜙* in the experi-
mental system. In addition, the definition of pb is different from the definition
of the experimental reaction conversion (p). The experimental p value is defined
as the ratio of the reacted arms to all the arms; on the other hand, pb is the
probability of forming a bond with a neighboring site “only if the neighboring
site is occupied.” Thus, the experimentally estimated p* value corresponds to the
probability that neighboring sites are occupied and a bond is formed between
neighboring sites, pc = pbps.

The experimentally estimated pc −𝜙0/𝜙* values (symbols) and pc − ps predicted
by the model (solid line) are shown in Figure 8.3. One of the features of the
model prediction is the discontinuous change in pc at ps = 0.43. At this point,
all the neighboring sites are bonded (pb = 1 and pc = 0.43), and the system is
just percolated; however, below this point, the number of occupied sites is insuf-
ficient for percolation. This significant difference between pb and pc originates
from the restriction of the lattice, where only neighboring sites can be bonded.
This discrepancy is discussed in detail in Chapter 14. On the other hand, when
we focus on the region ps ≈ 1, the experimentally estimated pc value is close to
the value predicted by the bond percolation model. In addition, pc does not fur-
ther decrease with an increase in 𝜙0/𝜙*. This correspondence strongly suggests
that the bond percolation model in an appropriate lattice can be applied to the
semidilute to the concentrated region of the prepolymers.

8.3 Fractal Dimension at the Critical Point

In Section 8.2, we discussed the sol–gel phase diagram and failure of the
site–bond percolation model in the low 𝜙0 region. To investigate the reason
for this failure, we investigated the network structure at pc by means of the
fractal dimension. Figure 8.4 shows the critical behaviors at various preparation
concentrations (𝜙0 = 0.0087–0.034) [1]. In each critical condition, the power-law
relationship (G′ ≈ G′′ ∼𝜔u) was observed. The value of u increased with dilution,
corresponding to previous studies.

Dynamic scaling theory [5] expresses u as [6, 7]

u = z
z + k

(8.2)
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Here, z and k are the critical exponents for the equilibrium elastic modulus and
zero-shear viscosity near the critical point, respectively. When the excluded vol-
ume effect is dominant, Eq. (8.2) is reduced to the following [8–10]:

u = d
D + 2

(8.3)

Here, D and d represent the fractal dimension and the spatial dimension (d = 3),
respectively. According to Eq. (8.3), we can estimate the fractal dimension of the
percolated structure at pc from u. Figure 8.5 displays D plotted against 𝜙0/𝜙*.
The value of D at 𝜙0/𝜙* = 1 (D = 2.3) is close to the prediction of the conven-
tional percolation model for the diamond lattice (D= 2.5) [2]. In the dilute region,
D deviates downward from the prediction of the percolation model. This devia-
tion also indicates the inapplicability of the lattice-based percolation model to
the concentration region below 𝜙*. To understand the sol–gel transition in dilute
regions, we need to remove the restriction of lattices and consider the diffusion
of sites.

Aggregation theory is a popular theory describing network formation from
diffusing particles [11, 12]. The theory includes two representative models:
monomer–cluster and cluster–cluster aggregation models. The monomer–
cluster aggregation model describes the process by which monomer particles
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freely diffuse and agglomerate into a cluster that is immobilized in space [13].
In addition, the cluster–cluster aggregation model considers the process in
which both the clusters and monomers diffuse, collide with each other, and
form aggregates. Because this theory considers the diffusion of the particles,
it is expected to better reproduce the experiments in the dilute region than
the monomer–cluster aggregation model. According to three-dimensional
Monte Carlo simulations, the fractal dimensions of the percolation cluster in the
reaction-limited monomer–cluster and cluster–cluster aggregation processes
were reported to be 3.00 and 2.10, respectively [14]. In addition, the fractal
dimensions in the diffusion-limited monomer–cluster and cluster–cluster
aggregation processes were reported to be 2.50 and 1.78, respectively [12]. Our
experimental value in the lower 𝜙0 region (D = 1.6) is close to that predicted by
the diffusion-limited cluster–cluster aggregation (DLCCA) process. This result
may suggest that the network formation process changes from lattice-based
percolation to aggregation processes with dilution. This shift is likely to be
caused by the fact that dilution increases the distance between prepolymers and
prepolymers need to diffuse to react with other prepolymers.

Here, we make a conjecture on the percolated network structure formed at
𝜙0/𝜙* = 1/5. First, even at such a low 𝜙0, the reaction conversion was up to
0.9. To achieve such a high conversion with limited spatial neighbors, intensive
intramolecular reactions should occur between the spatial neighbors. Double or
triple linkages between neighbors result in the formation of a chain-like struc-
ture that is locally oriented and has a low fractal dimension similar to that of the
real chain. This prediction is supported by the abnormally low fractal dimension
(D = 1.6), which is close to that of the real chain (D = 1.7).

8.4 Critical Behavior of Elastic Modulus

The elastic modulus (G) near the critical region is expected to follow a power
law as

G ∼ |p − pc|f (8.4)

where p is the reaction conversion. The Bethe approximation predicts f = 3 [15,
16], whereas de Gennes and Daoud predict f = 1.9 and 2.6, respectively [17, 18].
Experiments showed scattered f values ranging from 2 to 4 [19–28]. Thus, the
validity of these predictions is still unclear [29]. In addition, most of the analyses
did not fully examine Eq. (8.4) because of the difficulty in quantifying p. Indeed,
parameters such as time (|t − tc|) or temperature (|T −Tc|) during the gelation
process have been used instead of |p− pc|. Here, tc and Tc are defined as the time
and temperature at the critical point, respectively.

In the case of a Tetra-PEG gel, we can directly measure p during the reac-
tion process by means of ultraviolet–visible spectroscopy while at the same time
measuring the viscoelasticity by means of a rheometer. Thus, we can estimate
the time-dependent relationship between G and p − pc, as shown in Figure 8.6
[30]. Here, we determined pc as p at the time when the storage modulus and loss
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modulus crossed over in the rheological measurements. Prior to the experiment,
we confirmed that this criterion gave almost the same pc as those predicted by
the Winter–Chambon criterion [2]. To observe the critical behavior, the range
of p − pc is set so that the storage modulus is not dependent on frequency and
follows the power law. In this range, we can identify the storage modulus as G
because the storage modulus is much larger than the loss modulus. The obtained
power law (f = 1.95± 0.05) was similar to the prediction of de Gennes (f = 1.9),
regardless of the initial polymer concentration. These data suggest that the elas-
ticity of gels is analogous to the conductivity of a resistor network, as proposed
by de Gennes.

8.5 Reaction Kinetics of a Gelling System

The chemical reaction of Tetra-PEG–NH2 with Tetra-PEG–OSu involves (i)
aminolysis between the amine group and activated ester, (ii) hydrolysis of the
activated ester, and (iii) protonation equilibrium of the terminal NH2 group. NH2
is in equilibrium with the equilibrium constant K a = [−NH2][H+]/[−NH3

+].
Notably, only the neutral amine group reacts with the activated ester group to
form the amide bond, whereas the protonated amine group does not react due to
the absence of an unshared electron pair. Therefore, the reaction rate equation
is described as follows [31]:

−d[−NH2]total

dt
= kgel[−NH2][−NHS] = kgel f [−NH2]total[−NHS] (8.5)

−d[−NHS]
dt

= kgel f [−NH2]total[−NHS] + khyd[−NHS] (8.6)
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Here, [−NH2]total is defined as the total concentration (mol/dm3) of amine
groups, i.e. [−NH2]total = [−NH2]+ [−NH3

+]. khyd, kgel, and f denote the rate
constant for hydrolysis, the rate constant for gelation, and the fraction of
neutral amines to total amines, i.e. f = [−NH2]/[−NH2]total = K a/(K a + [H+]),
respectively. The K a value was determined by potentiometric titration of
a Tetra-PEG–NH2 solution to be 10−9.27 mol/dm3 [32]. On the basis of
the previously mentioned rate equations, we evaluate kgel in the following
Section 8.5.2.

8.5.1 Hydrolysis Kinetics of Tetra-PEG–OSu

Figure 8.7a shows UV spectra for the hydrolysis kinetics of Linear-PEG–OSu
(Mw = 5 kg/mol, 𝜙 = 0.0044) [31]. The peak intensity observed at 260 nm, which
was assigned to the dissociated NHS group, gradually increased as the gelation
reaction progressed, indicating that the hydrolysis reaction proceeded.

[NHS−](t) =
[−NHS]0

A260(∞)
A260(t) (8.7)

Here, A260(∞) and A260(t) denote the peak intensity at 260 cm−1 at the end of reac-
tion and at time t, respectively. We thus estimated the hydrolysis rate constant,
khyd, by least-squares fitting analysis on the basis of the following rate equation:
−d[−NHS]/dt = d[NHS−]/dt = khyd[−NHS]. The khyd values for Tetra-PEG–NHS
of Mw = 10, 20, and 40 kg/mol were estimated to be 2.1× 10−4, 1.8× 10−4, and
1.9× 10−4 s−1, respectively, and that for Linear-PEG–NHS was estimated to be
2.8× 10−4 s−1 (Figure 8.7b) [31]. These values were used as the fixed parameters
in the following fitting analysis.

8.5.2 Gelation Kinetics of Tetra-PEG Gel

Figure 8.8 shows the concentration dependence of the kinetic traces of [NHS−]
for (a) 5k Linear-PEG, (b) 10k Tetra-PEG gel, (c) 20k Tetra-PEG gel, and (d)
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Figure 8.7 (a) Time dependence of UV spectra for the hydrolysis of Linear-PEG (𝜙 = 0.044) in a
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as a function of time. The solid lines are results from fitting with Eq. (8.6) and kgel = 0. Source:
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40k Tetra-PEG gel [31]. The solid lines in Figure 8.8 show the theoretical
curves obtained from fitting analysis using Eqs. (8.5) and (8.6), which roughly
agree with the observed data from reaction initiation to near completion. The
observed data are roughly represented by the fitted lines, regardless of gelation
threshold.

From the fitting analysis, the gelation rate constants kgel were successfully esti-
mated for all the systems (Figure 8.9) [31]. The kgel values of the Tetra-PEG gels
are almost constant regardless of the polymer volume fraction and prepolymer
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Figure 8.10 Comparison of reaction rate constants of the gelation of a Tetra-PEG gel,
crosslinking photopolymerization, and a diffusion-controlled polymer chain reaction. Source:
Reproduced with permission from Nishi et al. [31]. Copyright 2014, American Chemical Society.

molecular weight and are close to those for the Linear-PEG system. Furthermore,
the reaction rate constant corresponds to the aminolysis rate of a low-molecular
weight system (≈50.9 dm3/(mol s)) and is 107–108 times smaller than that of
diffusion-controlled reactions of polymer solutions. These results strongly
suggest that these reactions are reaction limited; the reaction rate of amide bond
formation is much slower than the collision rate of the terminal OSu and amine
groups (Figure 8.10) [31].

Here, we compare the diffusion-limited and reaction-limited cases for AB-type
crosslink coupling. In the case of a diffusion-limited reaction, the reaction rate
between A and B is much faster than diffusion motion. Therefore, A and B react
just after encountering each other, and the local concentration of A and B at a
specific time is suddenly frozen. As a result, the transient concentration hetero-
geneity is frozen, leading to spatial inhomogeneity. In addition, under such a high
reaction rate, it is impossible to mix A and B solutions homogeneously before
gelation. On the other hand, in the case of a reaction-limited reaction, the reac-
tion rate between A and B is much slower than diffusion motion. Therefore, the
A and B prepolymers diffuse and homogenize throughout the system, resulting
in efficient and uniform gelation.
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The end-to-end distance of a network strand in a gel is typically in a size range of
a few to several tens of nanometers. This length scale is far below the diffraction
limit of visible light. In addition, the network strands fluctuate in the solvent on
a time scale of milliseconds due to their thermal motion. This size and dynamics
make it impossible to observe the network structure by general optical micro-
scopes. Modern atomic force microscopy (AFM) with fast tapping mode allows
direct observation of soft materials with subnanometer resolution [1], while the
observable region is limited to the surface of the samples. Transmission elec-
tron cryomicroscopy (Cryo-TEM) with a fast cooling system recently visualized
immiscible network structures such as thick gelatin bundles in a gelatin gel [2],
while it is still challenging to observe miscible networks and other soft materials
because a single polymer chain is almost transparent to electrons. The most pop-
ular technique for probing the nanostructure of soft materials, including gels,
is scattering measurements with light, X-rays, and neutrons [3]. The photons
and neutrons scattered by the gel network form interference patterns, reflect-
ing the spatial distribution of the polymer chains. Here, we introduce several
results of scattering from a Tetra-PEG gel. All the data shown in the following text
were obtained on a small angle neutron scattering (SANS) instrument, SANS-U,
installed in the Japan Research Reactor-3 (JRR-3).

9.1 Scattering Curves of Tetra-PEG Gels

The scattering profiles of Tetra-PEG gels are shown in Figure 9.1. In the case
of the as-prepared 5k Tetra-PEG gel, anomalous strong scattering exists for
q< 0.01 Å−1, indicating that there are spatial defects with a characteristic size
larger than 50 nm. However, in all the other gels, this anomalous scattering
was not observed. Based on the scattering profiles, most of the Tetra-PEG gels
were spatially homogeneous, at least in the size range smaller than 100 nm.

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 9.1 Scattering intensity curves of Tetra-PEG gels at various preparation concentrations:
(a) 5k, (b) 10k, (c) 20k, and (d) 40k Tetra-PEG gels. Source: Reproduced with permission from
Matsunaga et al. [5]. Copyright 2009, American Chemical Society.

The solid curves are the model fits with the Ornstein–Zernike (OZ) function
(Eq. (9.1)) [4]:

I(q) = (Δ𝜌)2RT𝜙2

NAMos

1
1 + 𝜉2q2 (9.1)

Here, R is the gas constant, T is the absolute temperature, Mos is the longitudinal
modulus of the gel, and 𝜉 is the correlation length of a gel network (Column 2).
In contrast to the single-contact theory, which is a molecular-based model, the
OZ function is derived on the basis of thermodynamics. The I(0) values obtained
from the OZ function fit to the data of the Tetra-PEG gels are obviously a decreas-
ing function of 𝜙 (Figure 9.1), suggesting that all gels are in a semidilute regime.
This result is a natural outcome because the polymerization degree of the gel net-
work is infinitely large and c* is close to 0. This statement is also supported by the
osmotic pressure observed in Chapter 14. The correlation length of the gel net-
work estimated from the OZ fit is shown in Figure 9.2. The correlation length
is almost independent of the molecular weight of the prepolymers. For the 40k
Tetra-PEG gel, 𝜉 agrees well with a scaling prediction for a semidilute solution
with a good solvent, 𝜉 ∼𝜙−0.75. Notably, the values of 𝜉 estimated from the OZ
function strongly depend on the fitting range. Strictly speaking, the OZ function
should be only applied when q<𝜉−1 or I > 0.5I(0). The relatively large variation
in the scaling relation in Figure 9.2 may originate from the fitting range.

In addition to the as-prepared state, we studied the equilibrium-swollen
Tetra-PEG gels [5]. Notably, the degree of spatial heterogeneity is enhanced by
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Figure 9.2 Correlation length of Tetra-PEG gels as a function of preparation concentration.
Source: Reproduced with permission from Matsunaga et al. [5]. Copyright 2009, American
Chemical Society.

swelling because swelling causes sparse regions to become more diluted and
dense region to become less diluted. To our surprise, even the structural factors
in swollen gels (data not shown here) in the SANS regime can be represented
by OZ-type scattering functions, irrespective of the molecular weight. This
anomalous result indicated that the spatial heterogeneity was negligible in fully
swollen Tetra-PEG gels in the q-range of SANS (0.006 < q< 0.2 Å−1), which
corresponds to a length scale of 3< d< 100 nm in real space.

However, when the q-range comes into the light scattering regime
(q< 0.003 Å−1, corresponding to a length scale in real space of d> 200 nm),
strong anomalous scattering was observed for all Tetra-PEG gels (Figure 9.3
for q𝜉 < 0.1). Similar anomalous scattering has been commonly observed in

Figure 9.3 Static light scattering and
SANS data are plotted as a function of
q𝜉 for four Tetra-PEG gels with
different molecular weights. All the
gels are measured in the as-prepared
state. Source: Reproduced with
permission from Matsunaga et al. [5].
Copyright 2009, American Chemical
Society.
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polymer gels, although it was usually observed immediately from the size of 𝜉,
i.e. q𝜉 ≤ 1. Thus, compared with conventional polymer gels, Tetra-PEG gels have
significantly suppressed spatial homogeneity. We must note that linear PEG
solutions displayed similar low-q anomalous scattering, which is attributed to the
large-scale aggregates of PEG chains. In the linear chain study, the contribution
of this anomalous low-q scattering was found to strongly depend on the solvent
and chemical structure of the end groups of the PEG chains.

9.2 Scattering Curves of Stretched Tetra-PEG Gels

We performed SANS measurements on Tetra-PEG gels under stretching [6].
A pioneering work on the structure analysis of a deformed network was per-
formed by Benoit using SANS in a contrast-matched polystyrene system to
correlate the microstructure and the macroscopic deformation [7, 8]. However,
the heterogeneity of the gel network made the data analysis difficult. Figure 9.4
shows a series of 2D scattering patterns of a Tetra-PEG gel prepared at 𝜙 = 0.11
with a molecular weight of 40k. The gel was uniaxially stretched to various
strain ratios (𝜆 = 1− 5). The scattering patterns acquired with different detector
distances (sample to detector distance (SDD), 2 and 8 m) at 𝜆 = 1.0 were almost
isotropic. Slightly anisotropic SANS patterns were observed when SDD = 2 m
at a higher strain ratio (𝜆> 3). However, compared with the anisotropy in
conventional gels, which show clear butterfly patterns even at very small 𝜆
values, this anisotropy is quite small. The 2D SANS patterns were reduced to
1D I–q profiles by taking the parallel and perpendicular sectional average and
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Figure 9.4 2D scattering profile of a Tetra-PEG gel under uniaxial deformation. The gel was
prepared at 𝜙 = 0.11 with a molecular weight of 40k. Each image was measured for 10 minutes
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Figure 9.5 Variation in microscopic
deformation ratios (𝛼para and 𝛼perp) as a
function of macroscopic strain ratio (𝜆)
of Tetra-PEG gels (circles and triangles).
The theoretical lines predicted by the
affine (solid line), junction-affine
(dashed line), and phantom chain
(chain line) models are shown as
guides. Source: Reproduced with
permission from Matsunaga et al. [6].
Copyright 2011, American Chemical
Society.
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subsequently analyzed with the OZ function to obtain the stretched blob size in
each direction.

Figure 9.5 shows the microscopic deformation ratios, 𝛼para and 𝛼perp, as a
function of the macroscopic strain ratio, 𝜆. The microscopic deformation ratios
denote the deformation ratio of the blob size with respect to the blob size in
the undeformed state (𝜆 = 1). In comparison to the theoretically predicted
variations for chain stretching, i.e. affine, junction-affine, and phantom network
models, the variations in 𝛼para and 𝛼perp were negligibly small. This result suggests
that the blob size, which is a typical size of the concentration fluctuation, is
insensitive to the conformational changes of polymer chains, at least at the
strain ratio tested in the study. Since the polymer chains are definitely stretched
to an extent much larger the values of 𝛼para and 𝛼perp, the use of blob size to
probe the chain deformation may be inappropriate. One needs to label a small
number of network strands with deuterium in order to visualize the chains by
means of neutron scattering. Then, one can know the relationship between
macroscopic and microscopic deformations and examine the models of rubber
or gel elasticity.
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Elastic modulus (G) is one of the most representative physical properties of
polymer gels. The affine and phantom network models predict G as functions
of the number density of elastically effective chains (𝜈) and the number density
of crosslinks (𝜇) (Section 3.3).

Gaf = 𝜈kT (3.15′)

Gph = (𝜈 − 𝜇)kT (3.35′)

where k is the Boltzmann constant and T is the absolute temperature. The dif-
ference between these models is how they address the fluctuation of crosslinks.
The affine network model assumes that crosslinks are fixed to the gel body
and that the deformation of network strands perfectly follows the macroscopic
deformation. By contrast, the phantom network model assumes that crosslinks
fluctuate and that the deformation of the network strands is attenuated. For a
perfect tetra-functional polymer network, the G predicted by the affine network
model is double than that predicted by the phantom network model. Despite
such significant differences, the validity or the condition for the establishment
of these models remain unknown.

10.1 Effect of Connectivity

Tuning the connectivity (the reaction conversion) induces the minimum varia-
tion in the system, i.e. there is no change in the substances included in the system,
and the only difference is whether the chain ends are connected or not. There-
fore, compared with other structural parameters, i.e. strand length and polymer
concentration, the connected fraction is expected to have a simple influence on
the physical properties. Therefore, p is appropriate as the first parameter to be
tuned for understanding the structure–property relationship.

To investigate the effect of the connectivity (p) on G, we investigated
the evolution of G during the gelation process by means of rheometry and
ultraviolet–visible spectroscopy. G and p were recorded as a function of

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
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Figure 10.1 Comparison between the
experimental results for a Tetra-PEG gel
and the results predicted by EMA
regarding the p dependence of G/G0.
Source: Reproduced with permission
from Nishi et al. [1]. Copyright 2017,
American Physical Society.

time (t), and then the G–p relationship was obtained using t as an intermediary.
This method enables us to experimentally obtain a continuous G–p relation-
ship. Figure 10.1 shows the relationship between G/G0 and p [1]. Notably,
G0 is the extrapolation of G at p = 1 based on the percolated network model
(Section 3.4.1). All data for the 20k Tetra-PEG gels with different initial polymer
concentrations (C0) fall onto a single curve, which corresponds to the values
predicted by effective-medium approximation (EMA). EMA was first developed
to describe the conductivity of a bond-disordered conductance network [2] and
was later improved to describe the rubber elasticity of a Gaussian chain network
[3]. As shown in the inset of Figure 10.1, EMA converts a disordered network
with elastic constant g0 into an averaged ideal network with elastic constant gm.
Assuming that the average fluctuation of the crosslinks is 0 under the balance
of tension, G/G0 is described as the following equation in the range of large p
values (p> 0.75 in the tetra-branched network).

G∕G0 =
gm

g0
=

p − 2∕z
1 − 2∕z

(10.1)

where z is the degree of branching in the network. Notably, the G/G0–p relation-
ship in EMA agrees well with the G/G0–p relationship in the phantom network
model (Section 3.3.2) with the Bethe approximation (Section 3.4.2) [1]. In other
words, the p dependence of G/G0 is successfully described by the phantom net-
work model as [1]

G = g(𝜈 − 𝜇)kT = gGph (10.2)

where g is the proportionality constant. The values of g(=G/Gph) are larger than
unity and increase with an increase in C0 (Figure 10.2). For further discussion
on g, we investigated the effect of the polymer concentration and molecular
weight of the network strands.

10.2 Effect of the Polymer Concentration and Network
Strand Length

We performed stretching measurements on Tetra-PEG gels with different
C0 values and prepolymer molecular weights [4]. The value of p was almost
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Figure 10.2 g(=G/Gph) as a function of
C0 in the 20k Tetra-PEG gel. The dashed
line shows g = 1, i.e. G = Gph.
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constant at approximately p = 0.9, although there was slight fluctuation among
the samples. Notably, this change in p is accounted for in the calculation of
Gph according to the Bethe approximation. Figure 10.3 shows the relationship
between g (=G/Gph) and C0/c*, where c* is the overlap polymer concentration of
the prepolymers (Section 2.2.1). The prediction of the phantom network model is
a flat line showing g = 1 (dashed line). In this plot, all data roughly collapsed onto
a single curve, suggesting that C0/c* is the parameter governing g. In the entire
range tested, g increased with an increase in C0/c*. It should be noted that g = 1;
in other words, G agrees well with the prediction of the phantom network model
at approximately C0 = c*. Previously, the upward deviation from the prediction
of the phantom network model (g > 1) has often been attributed to the existence
of trapped entanglements. However, the phantom-like p dependence, the
ultimate stretched ratio monotonically increasing with an increase in polymer
concentration (Chapter 11), and the fracture energy obeying the Lake–Thomas
model (Chapter 12) strongly suggest that this supposition is not the case. The
transition to the affine network model is also not the case because we observed
the phantom-like p dependence. At this point, we predict that this increase in g
is caused by suppression of the fluctuation of the network strands (conceptually
similar to the affine network model) or simply by the overlapping of network
strands (conceptually similar to the topological interaction). In addition, in
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the range of C0 < c*, g decreased more steeply with a decrease in C0/c*. The
downward deviation from the prediction of the phantom network model in the
dilute region may be due to the formation of elastically ineffective connections
(Section 3.7).
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As discussed in Section 5.2, the stress–strain relationship in polymer networks is
determined by the strain energy density (W ) function; 𝜎i is the partial derivative
of W with respect to 𝜆i:

𝜎i =
𝜕W
𝜕𝜆i

(5.56)

where 𝜎i and 𝜆i (i = x, y, z) are the nominal stress and the principal stretch ratio,
respectively, along the x, y, and z axes. In the past half-century, many types of phe-
nomenological or molecular models for W have been proposed [1, 2]. Although
these models have been vigorously examined, full understanding of the W in
polymer networks has not been obtained due to the following two major prob-
lems: One stems from the limitation in the deformation range of conventional
mechanical testing, and the other stems from the inhomogeneities in polymer
networks. To overcome these problems, we performed general biaxial and uniax-
ial stretching tests on a series of Tetra-PEG gels with precisely controlled network
structures [3–5].

11.1 Estimation of Strain Energy Density Function

To investigate the strain energy density function, we performed general biaxial
stretching measurements (see Section 5.2.1). The biaxial stretching measure-
ment was carried out on square sheets of Tetra-PEG gels in the as-prepared
state. The stress–strain relationships obtained here corresponded to the equi-
librium relationships without time effects because no appreciable relaxation
in stress was observed after the imposition of a constant large strain at the
experimental crosshead speed of 1.0 mm/s. The biaxial tester can stretch the
samples independently in the two orthogonal directions (x and y directions) and
measure the tensile force in each direction as a function of the principal ratios 𝜆i
(i = x, y). We employed here the three types of biaxial deformation: equi-biaxial
(EB) stretching, pure shear (PS), and unequi-biaxial (UB) stretching. Under EB
stretching, the samples were equally elongated in the x and y directions (𝜆x = 𝜆y).

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 11.1 Nominal stress–elongation relationships for Tetra-PEG gels ((a) 𝜙0 = 0.0662 and
(b) 𝜙0 = 0.0961) under EB stretching and PS. The dashed lines represent the stress–strain
relationships of the NH model. Source: Reproduced with permission from Katashima et al. [4].
Copyright 2012, Royal Society of Chemistry.

Under PS, the samples were stretched in the x direction while maintaining the
initial dimensions in the y direction (𝜆y = 1). Under UB stretching, the samples
were stretched in the x direction at a crosshead speed of 1.0 mm/s and in the y
direction at a crosshead speed of 0.50 mm/s, which resulted in biaxial stretching
satisfying the relationship 𝜆y = (1+ 𝜆x)/2. Under each type of deformation, the
samples were elongated up to macroscopic rapture.

11.1.1 Applicability of Neo-Hookean Model

Figure 11.1 shows 𝜎EB, 𝜎PS-x, and 𝜎PS-y as a function of 𝜆x. Under EB stretch-
ing, no appreciable difference was observed between 𝜎EB-x and 𝜎EB-y, assuring
the achievement of equal strains in the two directions. First, we examine the
applicability of the neo-Hookean (NH) model [6–10] (see Section 5.3.1) to the
biaxial data. The NH model, one of the simplest phenomenological W functions,
is expressed as

W = G
2
(𝜆x

2 + 𝜆y
2 + 𝜆z

2 − 3) = G
2
(I1 − 3) (5.36)

This function includes only I1, which is the first invariant of Green’s deformation
tensor, as a variable. The NH model has the same equation as the affine network
model, which has been considered a model for ideal polymer networks with infi-
nite extensibility and without structural defects. The stress–strain relationship
for each deformation mode obtained by the NH model is given by

𝜎EB = G(𝜆x − 𝜆x
−5) (equi-biaxial) (11.1)

𝜎PS-x = G(𝜆x − 𝜆x
−3) (pure shear) (11.2)

𝜎PS-y = G(1 − 𝜆x
−2) (pure shear) (11.3)

where the condition of isovolumetric deformation (𝜆x𝜆y𝜆z = 1) is employed.
The dashed lines in Figure 11.1 represent the stress–strain relationships pre-

dicted by Eqs. (11.1)–(11.3). A satisfactory fit is observed in only the low-strain
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region (approx. 𝜆x < 1.3), and the NH model evidently fails to describe the
data even at a moderate deformation of 𝜆x > 1.3. Thus, the stress–elongation
behaviors of the Tetra-PEG gels, which are assumed to be near-ideal networks,
are far from those predicted by the NH model. This result indicates that the
effects of finite extensibility and/or explicit strain coupling between different
axes, such as 𝜆i𝜆j, both of which are not considered in the NH model, exist in
Tetra-PEG gels.

11.1.2 Finite Extensibility Effect

Conventionally, strain hardening at high deformation is modeled as the
non-Gaussian statistics of strongly stretched chains [11, 12]. In this section, we
adopt the Gent model [13], which describes the effect of finite extensibility by a
minimal addition to the NH model. The elastic free energy of the Gent model is
expressed as

W = −G
2
(Im − 3) ln

(
1 −

I1 − 3
Im − 3

)
(5.24)

The quantity Im is the maximum value of I1 where the stress becomes infinite.
Notably, Eq. (5.24) is reduced to the NH model in the low-strain region. The
stress–strain relationship for each deformation mode is given by

𝜎EB =
G(𝜆x − 𝜆x

−5)
1 − (2𝜆x

2 − 𝜆x
−4 − 3)∕(Im − 3)

(equi-biaxial) (11.4)

𝜎PS-x =
G(𝜆x − 𝜆x

−3)
1 − (𝜆x

2 − 𝜆x
2 − 2)∕(Im − 3)

(pure shear) (11.5)

𝜎PS-y =
G(1 − 𝜆x

−2)
1 − (𝜆x

2 − 𝜆x
−2 − 2)∕(Im − 3)

(pure shear) (11.6)

Although the fit for 𝜎PS-x using Eq. (11.5) works well, the theory fails to describe
the data for 𝜎PS-y and 𝜎EB using the same fitting parameters (Figure 11.2). When
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Figure 11.2 Nominal stress–elongation relationships for Tetra-PEG gels ((a) 𝜙0 = 0.0662 and
(b) 𝜙0 = 0.0961) under EB stretching and PS. The dashed lines are the fitting results of the Gent
model. Source: Reproduced with permission from Katashima et al. [4]. Copyright 2012, Royal
Society of Chemistry.
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we focus on 𝜎PS-y, the theoretical predictions shown are always lower than
the experimental values; the effect of stretching in one direction on the stress
in the other direction is stronger than the theoretically expected effect. In
Section 11.1.3, we focus on this strain coupling between different axes.

11.1.3 Coupling Between Different Principal Axes

The NH model does not include explicit strain coupling, which is represented
by the cross-terms 𝜆i𝜆j (i, j = x, y, z), except for the weak coupling as a result
of volume conservation (𝜆x𝜆y𝜆z = 1). The absence of the cross-term causes no
significant difference in 𝜎x between the different types of deformation in the large
𝜆x region (Figure 11.1) and is most likely the reason for the failure of the NH
model to represent experimental data.

The stress ratio under PS deformation (𝜎PS-y/𝜎PS-x) is known as a measure of the
cross-effect of the strains in the x and y directions on stresses [14]. In general, the
W function for incompressible materials (𝜆x𝜆y𝜆z = 1) is expressed as a function
of I1 and I2 as

W = W (I1, I2) (11.7)

The stresses under biaxial deformation are given by [2]

𝜎i =
𝜕W
𝜕𝜆i

= 2
𝜆i

(
𝜆i

2 − 1
𝜆i

2
𝜆j

2

)
(W1 + 𝜆j

2W2) (i, j = x, y) (11.8)

where W 1 and W 2 are the derivatives of W with respect to I1 and I2, respectively.
Equation (11.8) gives a general expression of the stress ratio under PS deforma-
tion as [14]

𝜎y

𝜎x
=

𝜆x

𝜆x
2 + 1

+ AW 2 (11.9)

A =
𝜆x(𝜆x

2 − 1)
(𝜆x

2 + 1)(W1 + W2)
(11.10)

From Eq. (11.9), the stress ratio in the case of W 2 = 0, i.e. without an explicit
cross-effect of strains, is expressed as

𝜎y

𝜎x
=

𝜆x

𝜆x
2 + 1

(11.11)

It should be noted that this is also the case with the Gent model, which does
not include I2 as a variable. The dashed line in Figure 11.3 is the prediction of
Eq. (11.11). The values of the stress ratio for the Tetra-PEG gels in the moderate
𝜆x region were higher than the values predicted by the NH and Gent models.
The stress ratio, i.e. the coupling strength, increases with an increase in 𝜙0. These
results clearly show that the failure of the Gent model in Figure 11.2 is mainly
attributable to the absence of explicit cross-effects.
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Figure 11.3 Stress ratio (𝜎PS-y/𝜎PS-x) as a
function of 𝜆x under PS deformation for
each sample. The dashed line shows the
prediction of the Gent and NH models.
Source: Reproduced with permission from
Katashima et al. [4]. Copyright 2012, Royal
Society of Chemistry.
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11.1.4 Extended Gent Model

On the basis of the results in Section 11.1.3, we revealed that the W function of
a Tetra-PEG gel required an explicit strain coupling term. Thus, to estimate how
to introduce the I2 term, we utilized the Rivlin–Saunders method, as introduced
in Section 5.2.1. In this method, we can evaluate 𝜕W /𝜕I1, 𝜕W /𝜕I2 with respect to
the experimental values 𝜎x and 𝜎y according to Eq. (5.26):

W1 = 𝜕W
𝜕I1

= 1
2(𝜆x

2 − 𝜆y
2)

[
𝜆x

3
𝜎x

𝜆x
2 − (𝜆x𝜆y)2

−
𝜆y

3
𝜎y

𝜆y
2 − (𝜆x𝜆y)2

]

W2 = 𝜕W
𝜕I2

= 1
2(𝜆x

2 − 𝜆y
2)

[
𝜆x𝜎x

𝜆x
2 − (𝜆x𝜆y)2

−
𝜆y𝜎y

𝜆y
2 − (𝜆x𝜆y)2

]
(5.26)

Figure 11.4 shows the normalized W 1 and W 2 values estimated from the PS data
plotted against I1 − 3 (=I2 − 3). W 1 increased with increasing I1 − 3, reflecting the
finite extensibility effect. On the other hand, W 2 showed a finite positive value
independent of the deformation ratio, suggesting that the “linear” I2 term is nec-
essary to reproduce the W function of the Tetra-PEG gel.

Figure 11.4 W1 and W2 estimated from
the PS data plotted against I1 − 3
(=I2 − 3).
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According to the Rivlin–Saunders plot, we proposed a new model (extended
Gent model) that is expressed as a sum of the Gent model and a linear term of I2:

W = G
2

{
−(1 − r)(Im − 3) ln

I1 − 3
Im − 3

+ r(I2 − 3)
}

(11.12)

Here, r determined the strength of the I2 term in the modulus. The stress–strain
relationship for each deformation mode in this model is given by

𝜎EB = G
{ (1 − r)(𝜆x − 𝜆x

−5)
1 − (2𝜆x

2 − 𝜆x
−4 − 3)∕(Im − 3)

+ r(𝜆x
2 − 𝜆x

−3)
}

(equi-biaxial)

(11.13)

𝜎PS-x = G
{ (1 − r)(𝜆x − 𝜆x

−3)
1 − (𝜆x

2 − 𝜆x
−2 − 3)∕(Im − 3)

+ r(𝜆x − 𝜆x
−3)

}
(pure shear)

(11.14)

𝜎PS-x = G
{ (1 − r)(1 − 𝜆x

−2)
1 − (𝜆x

2 − 𝜆x
−2 − 3)∕(Im − 3)

+ r(𝜆x
2 − 1)

}
(pure shear)

(11.15)

The parameters r and Im were independently determined by the following pro-
cedure. r was estimated from the fit of 𝜎PS-y/𝜎PS-x vs. 𝜆x because only the term I2
governs the coupling strength between different axes (Figure 11.3). The Im value
was estimated from the fit to PS-x using the evaluated values of r. The theoreti-
cal predictions for EB and PS-y obtained with these parameters are shown by the
dashed lines in Figure 11.5.

The data for all 𝜙0 values are in good agreement with Eqs. (11.13)–(11.15) over
a wide range of 𝜆x values. Figure 11.5 also includes the data for UB stretching of
𝜆y = (𝜆x + 1)/2. The stress–strain relationship for UB stretching in the extended
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(b) 𝜙0 = 0.0961) under EB stretching, UB stretching, and PS. The dashed lines are fitting results
for the extended Gent model. Source: Reproduced with permission from Katashima et al. [4].
Copyright 2012, Royal Society of Chemistry.



11.2 Cross-Coupling 189

Gent model is given by

𝜎UB-x = G
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(11.17)

The data for UB stretching for all specimens is also well reproduced by Eqs.
(11.16) and (11.17) with the parameters used in the other types of deformation.
Thus, the extended Gent model successfully describes the stress–strain rela-
tionships for the Tetra-PEG gels with various 𝜙0 values under different types of
deformation.

11.2 Cross-Coupling

In Section 11.1.4, we learned that the cross-coupling between the stresses in the
stretching and perpendicular directions is represented by the I2 term. The effect
of cross-coupling was enhanced by an increase in the polymer volume fraction
(𝜙0). Previous studies attributed the cross-effect to the contribution of entan-
glements between network strands [2, 15–24]. However, this interpretation is
most likely ruled out for the Tetra-PEG gels, which have no appreciable num-
ber of chain entanglements (see Chapters 10 and 12). Thus, the origin of the
cross-coupling in the W function remains unclear. To elucidate the effect of the
polymer volume fraction, we tuned three different polymer volume fractions:
polymer volume fraction of elastically effective strands (𝜙elastic), that of elastically
ineffective strands (𝜙inelastic), and that of guest strands (𝜙guest). We investigated the
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relationship between the cross-coupling strength (r) in the extended Gent model
and the structural parameters and discussed the molecular origin.

11.2.1 Effects of the Fraction of Elastically Effective and Ineffective
Chains

To tune𝜙elastic and𝜙inelastic, we tuned the fraction of connected arms, p, from 0.56
to 0.90. According to the Bethe approximation [25], the fractions of elastically
ineffective and effective strands are estimated as (see Section 3.4.2)

𝜙elastic =
(4P(X4) + 3P(X3) + 2P(X2))

4
𝜙0 (11.18)

𝜙inelastic =
(P(X3) + 2P(X2) + 4P(X1))

4
𝜙0 (11.19)

The range of p values examined corresponds to a range of 0.11< 𝜙inelastic/𝜙elastic
< 1.23. Figure 11.6a,b illustrates the stress–elongation curves for the 20k
Tetra-PEG gels of 𝜙0 = 0.066 with various 𝜙inelastic/𝜙elastic values under PS
deformation. The shear modulus (G) estimated from the initial slopes varied
by approximately 1 order of magnitude from 7.30× 103 to 1.01× 103 Pa. The
calculation based on the Bethe approximation [26] shows that even when p
decreases to 0.56, the sol fraction (𝜙sol = P(X0)𝜙0) remains at approximately
0.06𝜙0, which suggests that the large variation in G is a direct consequence of a
variation in 𝜙inelastic/𝜙elastic.

Figure 11.7a shows the stress reduced by the shear modulus (G) as a func-
tion of 𝜆x. All the curves in each direction collapsed into a single curve. This
result indicates that a change in 𝜙inelastic/𝜙elastic has a pronounced effect on the
elastic modulus but has no appreciable influence on the form of the W func-
tion. This outcome does not contradict the finding that the ultimate elongation
under uniaxial stretching was independent of p (see Section 11.3). Figure 11.7b
shows 𝜎y/𝜎x as a function of 𝜆x under PS deformation. The dashed line depicts
the prediction of Eq. (11.11). Evidently, 𝜎y/𝜎x was independent of 𝜙inelastic/𝜙elastic
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throughout the entire range of strain. This result indicates that the cross-effect
of strains is influenced not only by the number of elastically effective strands but
also by the number of elastically ineffective strands. Interestingly, the contribu-
tion of the elastically ineffective strands to the cross-effect is similar to that of the
elastically effective network strands, although they have no contribution to the
equilibrium stresses.

11.2.2 Effects of Polymer Volume Fraction and Network Strand Length

We performed PS measurements on Tetra-PEG gels with different 𝜙0 values
and prepolymer molecular weights. Figure 11.8 shows the nominal stresses
(𝜎i: i = x, y) in the stretching (x) and constrained (y) directions as a function of
𝜆x under PS deformation for 10k and 40k Tetra-PEG gels with various polymer
volume fractions in the preparation state (𝜙0). The stress in Figure 11.8 is
normalized by the initial shear modulus (G) of each specimen.
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Figure 11.8 Normalized stress–elongation relationships under PS deformation for Tetra-PEG
gels: (a) the 10k Tetra-PEG gels and (b) the 40k Tetra-PEG gels with various 𝜙0 values. Source:
Reproduced with permission from Katashima et al. [5]. Copyright 2015, American Institute of
Physics.
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Figure 11.8 shows that the difference between 𝜎x/G and 𝜎y/G in the large
deformation region decreased with an increase in 𝜙0. This tendency is obvious in
Figure 11.9a,b, where the stress ratio (𝜎y/𝜎x) is plotted against 𝜆x using the data
in Figure 11.8. The dashed lines are the prediction of Eq. (11.11). It is confirmed
for the 10k and 40k Tetra-PEG gels that 𝜎y/𝜎x at finite strain became larger as
𝜙0 increased. This tendency was also observed for the 20k Tetra-PEG gels in
Figure 11.3 [4]. As we discussed in Section 11.1, the experimental data at finite
strains for all specimens were located in the upper region of Eq. (11.11), which
indicates that W 2 is finite and positive.

The ratio (𝜎y/𝜎x) at finite strain of each specimen tended to decrease with an
increase in 𝜆x. The fluctuation in 𝜎y/𝜎x in the small deformation region of 𝜆x < 1.1
is due to the sensitivity of the ratio to the experimental error involved in small
strains and stresses. The stress ratio in the 0 strain limit provides the Poisson’s
ratio based on infinitesimal elasticity theory [27]. The 𝜆x-dependence of 𝜎y/𝜎x
for the Tetra-PEG gels with various N values but with the same value of 𝜙0 is
compared at 𝜙0 = 0.096, 0.081, and 0.066 in Figure 11.9c–e, respectively. No sig-
nificant effect of N on the 𝜆x-dependence of 𝜎y/𝜎x was observed at each𝜙0. These
results suggest that the 𝜆x-dependence of 𝜎y/𝜎x is influenced by 𝜙0 but is not sig-
nificantly sensitive to N .

The cross-effect of strains, which is similar to the C2 term in the Mooney–Rivlin
function [28], has been discussed from the viewpoints of trapped entanglements
[16–18] and constraints on junction fluctuations [19–24]. However, Tetra-PEG
gels are made in semidilute solutions of the precursor polymers (𝜙0 < 0.1) with
modest molecular weights (≈104 g/mol). Considering that the entanglement
molecular weight for polyethylene glycol melts (Me) is 4.4× 103 g/mol [48] and
that the dilution effect on Me obeys the scaling relationship Me ∼ 𝜙

−𝛼 (𝛼 = 7/3
and 9/4 in 𝜃 and good solvents, respectively) [29], we can determine Me in solu-
tions of 𝜙 ≈ 0.1 to be Me ≈ 1× 106 g/mol, which is much larger than Mpre. This
estimate indicates that trapped entanglements hardly influence the mechanical
response of the gels. It was reported that the constraint junction model could
account for the presence of the I2 term in the W function for crosslinked rubber
[30, 31]. However, the constraint junction model fails to quantitatively describe
the data for the present specimens. In Section 11.1.4, we showed the applicability
of the extended Gent model (Eq. (11.12)), which considers an explicit cross-effect
of strains. The dashed lines in Figure 11.10 represent the results of the fitting of
the extended Gent model to the stress–elongation data under PS deformation
for the 10k and 40k Tetra-PEG gels with various 𝜙0 values. The extended Gent
model well describes the biaxial data throughout the entire range of strain for all
specimens.

The value of r (0< r < 1) is a measure of the cross-effect of strains because r
represents the contribution of the I2 term to the total stress. Figure 11.11 shows
the 𝜙0-dependence of r for the Tetra-PEG gels with various N values. The fol-
lowing two main features are observed: (i) r is mainly governed by 𝜙0, whereas N
has no significant effect on r, and (ii) r tends to increase with an increase in 𝜙0,
and the 𝜙0-dependence of r appears to be approximated by a linear relation pass-
ing through the origin. The latter feature indicates that no explicit cross-effect is
expected exclusively in the 0 limit of𝜙0. Classical rubber elasticity theory assumes
that the entropy of the whole network is a simple sum of the entropy of each single
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Figure 11.9 Stress ratio (𝜎y/𝜎x) as a function of 𝜆x under PS deformation for (a) the 10k
Tetra-PEG gels and (b) the 40k Tetra-PEG gels with various 𝜙0 values. The dashed lines in (a)
and (b) depict the results of Eq. (11.9) for every I1-based model. The 𝜆x-dependence of 𝜎y/𝜎x

for the 10k and 40k Tetra-PEG gels is compared at (c) 𝜙0 = 0.096, (d) 𝜙0 = 0.081, and (e)
𝜙0 = 0.066. Source: Reproduced with permission from Katashima et al. [5]. Copyright 2015,
American Institute of Physics.

network strand and considers no interaction between the network strands. The
finite cross-effect observed is expected to originate from some interaction (other
than entanglement effects) between the polymer chains, which is not considered
in the classical theory.

11.2.3 Effect of the Fraction of Guest Chains

In Sections 11.2.1 and 11.2.2, we revealed that the cross-effect is influenced by
only the polymer volume fraction in the preparation state,𝜙0, which encompasses
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Figure 11.10 The results of the fitting of the extended Gent model to the stress–elongation
data under PS deformation for the 10k Tetra-PEG gels of (a) 𝜙0 = 0.096, (b) 𝜙0 = 0.081, and (c)
𝜙0 = 0.066 and for the 40k Tetra-PEG gels of (d) 𝜙0 = 0.096, (e) 𝜙0 = 0.081, and (f ) 𝜙0 = 0.066.
The dashed lines depict the fitted curves of the extended Gent model. In (a) and (b), the
dashed and dotted curves represent the fitted results of the eight-chain model (see Section
5.3). Source: Reproduced with permission from Katashima et al. [5]. Copyright 2015, American
Institute of Physics.

the number of the chains connected to the whole network (elastically effective
[𝜙elastic] and ineffective strands [𝜙inelastic]) and the unconnected sol components
(𝜙sol). Notably, in the range tested, 𝜙sol ≪𝜙elastic + 𝜙inelastic ≈ 1. Thus, we inves-
tigate only the case without sol components. In this section, we systematically
introduce the unattached guest chains and elucidate their contribution to the
cross-effect of strains.
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Figure 11.11 The 𝜙0-dependence of r.
Triangle, circle, and square symbols
represent the data for 10k, 20k, and
40k Tetra-PEG gels, respectively. The
dotted line corresponds to the results
of linear regression. Source:
Reproduced with permission from
Katashima et al. [5]. Copyright 2015,
American Institute of Physics.
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Figure 11.12a,b shows the nominal stress and stress ratio as a function of 𝜆x for
the 20k Tetra-PEG gels of 𝜙host (=𝜙elastic + 𝜙inelastic) = 0.066 with various numbers
of unattached guest chains (𝜙sol/𝜙host = 0, 0.25, 0.50, and 1.0) under PS defor-
mation. In this study, we assumed that each 𝜙host equals the corresponding 𝜙0
because the sol fraction originating from the host network is negligibly small.
The lack of an appreciable effect of 𝜙guest on the initial modulus shows that the
presence of unattached chains during gelation has no significant influence on the
content of elastically effective network strands in the resultant gels. Importantly,
the presence of unattached chains had no appreciable effect on each stress and
𝜎y/𝜎x throughout the entire range of strain. This result shows that the guest chains
make no additional contribution to the stresses at finite biaxial strains. Evidently,
non-network strands have no relation to the cross-effect of strains. It should be
noted again that the stress–elongation data corresponded to the equilibrium data;
the oscillatory measurements showed no significant viscoelastic relaxation in the
frequency range from 0.1 to 10 Hz at room temperature. This result indicates that
the viscoelastic relaxation of the guest chains employed is so fast that it cannot
be detected in conventional tensile experiments.
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11.2.4 Conjecture on Origin of Cross-Coupling

The results show the presence of an explicit cross-effect of strains even in the
nearly regular networks without entanglement coupling of network strands. The
cross-effect observed here most likely does not originate from the entanglement
effect. In particular, the results in Figure 11.11 suggest that no cross-effect is
expected exclusively in the 0 limit of network concentration in real polymer
networks. The cross-effect originates from some interaction between network
strands, which are not considered in the classical Gaussian models extended
from the entropic elasticity of a single chain. Several types of interaction (other
than entanglement effects) have been proposed to account for the deviation of
the stress–elongation behavior of real crosslinked rubber from the classical the-
ories. The existing attempts can be roughly classified into the three approaches.
One is the anisotropic (nematic) interactions, which enhance the alignment of
neighboring segments [32–37]. For instance, Bladon and Warner [34] theoret-
ically discussed the nonlinear elasticity of a model nematic rubber composed
of mesogenic moieties and assumed that conventional (non-mesogenic) rubber
could be represented by nematic rubber with residual nematic interactions
at temperatures much beyond the nematic–isotropic transition temperature.
The second approach is the topological interactions between loop structures
in polymer networks (see Section 3.5) [38–41]. The researchers assumed the
ring-shaped structures or loops as structural elements of a crosslinked network
and theoretically considered the elastic effects originating from the constraint
that the topologies of the loop pairs remain unchanged under deformation.
Hirayama and Tsurusaki showed that such a topological effect results in
an explicit cross-effect of strains even for networks without entanglement
loops [41]. The third approach considers the excluded volume effect as the
source of interchain and intrachain interactions [42]. These interactions are
pronounced in the high-concentration region and transmit tension among the
chains, resulting in a finite cross-effect. Under tension, the force applied to a
chain is no longer parallel to the chain vector. The force is the sum of the axial
force and an applied moment, which produces a significant softening effect.

It is difficult to quantitatively assess the applicability of these approaches to
the present biaxial data because most of the models do not provide the ana-
lytical form for the stress–elongation relations required for fitting these data.
Furthermore, the physical meaning of most of the model parameters is quali-
tative, making it difficult to relate the parameters to the structural characteristics
in the networks. These approaches are expected to actually reproduce the main
features of the biaxial data for crosslinked rubber if some parameters are used as
adjustable fitting parameters.

11.3 Stretchability in Uniaxial Stretching

In Section 11.1.4, we deduced the strain energy density function of the Tetra-PEG
gels, which is well reproduced by extended Gent model. In this chapter, we
attempt to reveal the molecular picture describing the stretchability in simple
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uniaxial stretching. Here, we confirmed the inapplicability of the traditional
Kuhn model and proposed a new molecular model for predicting the ultimate
elongation ratio (𝜆max) of a polymer gel.

11.3.1 Kuhn Model

𝜆max is the indicator of how long a material can be deformed until breakage and
is an important parameter. Among the models for predicting the ultimate elon-
gation ratio (𝜆max), the most popular is the Kuhn model (see Section 1.2.2) [43].
In the Kuhn model, 𝜆max is estimated as the ratio of the contour length (L) to the
end-to-end distance (Rs) of the network strand. Assuming that the conformation
of the network strand obeys a Gaussian distribution, 𝜆max is given by [44]

𝜆max =
L
Rs

∼ aN
aN1∕2 ∼ N1∕2 (11.20)

where a is the monomer length and N is the polymerization degree of the network
strands. The Kuhn model expects that 𝜆max is a function of N and that even the
polymer concentration does not influence 𝜆max.

11.3.2 Effect of Connectivity

First, we investigated the effect of the fraction of connected arms (p) on the
finite extensibility using a p-tuned Tetra-PEG gel. By tuning the hydrolysis time
(tdeg), p is controlled from 0.92 to 0.55, and G is controlled from 11.2 to 2.4 kPa
(Figure 11.13). Figure 11.14 shows the stress–elongation curves of the p-tuned
Tetra-PEG gels. To focus on the difference in 𝜆max, the stress is normalized by
G. The prediction of the NH model, as a prediction for an infinitely stretchable
network, is also shown. The stress–elongation curves of p-tuned Tetra-PEG gels
deviated upward from the NH model, reflecting the finite extensibility of real
polymer gels. Apparent differences among the p-tuned Tetra-PEG gels were not
observed except for G. The points where the upward deviation occurs seemed
independent of p, and the normalized stress–elongation curves at various p

Figure 11.13 G as a function of p.
Source: Akagi et al. 2013 [3].
Reproduced with permission of
Royal Society of Chemistry.
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Figure 11.14 Reduced
stress–elongation curves of the
p-tuned Tetra-PEG gels. Source:
Reproduced with permission from
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values fall on a single curve. These results indicate that p affects G but has little
influence on the shape of the stress–elongation curves and 𝜆max.

This result can be explained by the heterogeneous distribution of connections
in p-tuned Tetra-PEG gels discussed in Section 5.6. Let us start from a tetra-
functional polymer network with complete connectivity. A scission of a network
strand forms two dangling chains and transforms two tetra-functional junctions
into two tri-functional junctions, which can still act as active crosslinks. This
event causes only the decrease in an elastically effective chain, which decreases
G, but does not change the number of crosslinks and the lengths of other net-
work strands. Thus, the stretchability in the high p region is hardly influenced by
the scissions. The Bethe approximation [45] and the percolated network model
[46, 47] predict that this condition holds at p > 0.7, as almost all crosslinks are
still crosslinks in the network.

11.3.3 Effect of Polymer Concentration and Network Strand Length

In Section 11.3.2, we have revealed that p does not influence N in the region
p > 0.7 and thus also does not influence 𝜆max. To directly tune N , we fabricated
Tetra-PEG gels from prepolymers with different molecular weights. Because the
values of p for 5k, 10k, and 20k Tetra-PEG gels were higher than p = 0.7, N corre-
sponds to the value predicted from the prepolymer molecular weight. In addition,
we tuned another important parameter, 𝜙0, which did not appear in the Kuhn
model.

Figure 11.15 shows the normalized stress–elongation curves of the 5k, 10k, and
20k Tetra-PEG gels. Upward deviation from the prediction of the NH model was
observed in the high 𝜆 region. The onset 𝜆 of the upward deviation increased with
increasing𝜙0 and N . Thus, the stretchability was enhanced with an increase in N ,
which qualitatively agreed with the prediction of the Kuhn model. On the other
hand, the enhancement in stretchability by an increase in 𝜙0 is not predicted by
the Kuhn model.

To quantitatively discuss 𝜆max, the extended Gent model (Eq. (11.12)) was
fit to the stress–elongation curves. Figure 11.16 shows 𝜆max as a function of
N . 𝜆max increased with increasing N : 𝜆max ∼ N0.59, N0.65, N0.74, and N0.61 for
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𝜙0 = 0.050, 0.066, 0.081, and 0.096, respectively. On average, the 𝜆max scaled with
N as 𝜆max ∼ N0.65, the power of which was slightly higher than that predicted
by the Kuhn model. In addition, 𝜆max increased with increasing 𝜙0, showing
the relationship 𝜆max ∼𝜙0

0.38 on average (Figure 11.17). Overall, the following
relationship was experimentally observed:

𝜆max ∼ 𝜙0
0.38Ncal

0.65 (11.21)
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11.3.4 Semiempirical Model Based on Experiments

Here, we propose a molecular picture giving this empirical equation. In the Kuhn
model, 𝜆max is estimated as the ratio of the contour length to the end-to-end dis-
tance of network strands. Because the contour length in the numerator has a
distinct molecular picture associated with breakage, there is a problem with the
denominator. Thus, we set the unknown, d, as a denominator and investigated
the form of d in comparison with the experimental results.

𝜆max =
aN
d

∼ 𝜙0
0.38Ncal

0.65 (11.22)

By solving Eq. (11.22) for d, we obtained

d ∼ 𝜙0
0.38Ncal

−0.35 ∼
(
𝜙0

Ncal

)1∕3

∼ 𝜈
−1∕3 (11.23)

where 𝜈 scales with𝜙0 and N as 𝜈 ∼𝜙0/N . As a result, we obtain the semiempirical
relationship d ∼ 𝜈−1/3; thus, 𝜆max ∼N/𝜈−1/3 ∼N2/3

𝜙0
1/3. The power −1/3 suggests

that d scales with the geometrical distance between the centers of neighboring
prepolymers. We replotted all the data of 𝜆max against N2/3

𝜙0
1/3 in Figure 11.18,

which shows the data collapse.
How can we draw a molecular picture from these results? Here, it should

be noted that d has a strong 𝜙0-dependence compared with that of the

Figure 11.18 𝜆max as a function of
Ncal

2/3
𝜙0

1/3 for the Tetra-PEG gels (5k,
rhombus; 10k, circle; and 20k, square).
The dashed line is the master curve
showing 𝜆max ∼Ncal

2/3
𝜙0

1/3. Source:
Reproduced with permission from
Akagi et al. [3]. Copyright 2013, Royal
Society of Chemistry.
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root-mean-square length of the free polymer chains in an athermal solution
(⟨Rg

2⟩1/2): ⟨Rg
2⟩1/2 ∼ aN3/5 in the dilute regime, and ⟨Rg

2⟩1/2 ∼ aN3/5(𝜙0/𝜙*)−1/8in
the semidilute regime. In contrast, d ∼ 𝜈

−1/3 ∼ (𝜙0/N)−1/3 in both regimes. The
strong power law observed in our results (𝜆max ∼𝜙0

0.38) cannot be explained by
this weak 𝜙0-dependence in an athermal solution. Instead, our results suggest
that d, the distance between the centers of neighboring prepolymers, should be
set as the initial length of the network strand. This difference in the denominator
is explained by the different mechanisms of the crosslinking reaction.

The Kuhn model assumes that the distance between crosslinks is maintained
as the end-to-end distance of a free chain with a polymerization degree of N . To
form a linkage under this condition, each arm of the prepolymer needs to find
its reactive counterpart without changing the end-to-end distance. This situa-
tion seems to be realized in a condensed system because there are many reactive
functional groups around the arm ends. This picture does not fit the dilute region,
where only limited encounters of reactive ends are allowed.

On the other hand, our empirical model suggests that the distance between
crosslinks is the distance between the centers of neighboring prepolymers, which
changes with the concentration of prepolymers and does not depend on the initial
arm length. This situation seems to be realized in a dilute system because there are
few reactive counterparts around the arm ends. The prepolymers need to change
the end-to-end distance of the arms to react with a counterpart. This idea is sup-
ported by the finding that the p of the Tetra-PEG gels formed below 𝜙* was not
significantly smaller than that of the gels formed above 𝜙* and at approximately
0.9. If the molecular picture of the Kuhn model was valid, p would drastically
decrease below 𝜙*.
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The fracture energy (T0) is the energy required to propagate a unit length of a
crack and is known as a representative parameter indicating fracture. The fracture
energy of elastomeric materials is known to be modeled by the Lake–Thomas
model (see Section 5.5.2) [1]:

T0 =
(3

8

)1∕2
𝜈LNU (5.63)

where 𝜈 is the number density of network strands, L is the displacement length,
N is the degree of polymerization of a network strand, and U is the total bond
energy of the backbone of monomeric unit. Initially, L is related to the length
of a network strand as L ≈ R0 ≈ aN1/2 (a: monomer length); however, there is
ambiguity in L because there is no concrete experimental validation because of
the practical absence of a model network. Instead, there were only semiquan-
titative experimental validations representatively performed by Gent [2, 3]. He
confirmed the relationship between T0 and G, T0 ∼G−1/2, which is given from
Eq. (5.63), assuming that 𝜈 ∼G and N ∼G−1. However, the direct contribution of
each parameter to T0, such as T0 ∼ 𝜈 or T0 ∼N3/2, has never been examined.

In the case of Tetra-PEG gel, one can tune 𝜈 and N independently and thus
fully examine the Lake–Thomas model. Here, we prepared Tetra-PEG gels with
systematically tuned degree of strand polymerization between crosslinks (N), the
polymer volume fraction in the as-prepared state (𝜙0), connectivity (p), and het-
erogeneous distribution in network strand length [4, 5]. To quantitatively exam-
ine Eq. (5.63), we directly substitute R0 into Eq. (5.63) and introduce an enhance-
ment factor (k) to accommodate the deviation of L from R0 as [2, 6, 7].

T0 =
(3

8

)1∕2
k𝜈R0NU (12.1)

12.1 Estimation of Fracture Energy

To investigate the fracture energy (T0), we performed tearing measurements on
trouser-shaped specimens. The gel specimens were used in the as-prepared state,

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 12.1 Tearing
force–extension relationships in
(a) 5k, (b) 10k, (c) 20k, and (d) 40k
Tetra-PEG gels (fine line,
𝜙0 = 0.034; bold line, 𝜙0 = 0.1).
Source: Reproduced with
permission from Sakai et al. [5].
Copyright 2014, Royal Society of
Chemistry.

not in the equilibrium-swollen state. One of the trouser legs was pulled upward at
a constant velocity of 40 mm/min while keeping the other leg stationary, and the
load (F) was recorded. We performed these tearing measurements at a different
velocity of 500 mm/min and confirmed the rate-independent tearing behavior
under this experimental condition. A similar rate-independent tearing behavior
was observed for all Tetra-PEG gels, indicating the absence of a viscoelastic effect
on tearing in the range tested.

Figure 12.1 shows the load–extension curves during tearing [5]. Initially, with
extension, the load value monotonically increased, and the crack did not prop-
agate. After crack propagation started, the load fluctuated with extension. The
degree of fluctuation was smaller at lower concentrations and molecular weights,
and vice versa. We estimated T0 as the average of local minimum values of F as

T0 = 2F
h

(12.2)

where h is the thickness of the gel samples. Notably, the average of local minimum
values of F were used in Eq. (12.2), because the elastic energy stored in the sample
is almost released at the condition.
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Figure 12.1 (Continued)
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12.2 Conversion-Tuned Tetra-PEG Gels

First, we investigated and focused on the effect of connectivity (p) on T0 by using
conversion (p)-tuned Tetra-PEG gels and focused on the pure effect of p on T0
while keeping 𝜙0 and N unchanged.

Figure 12.2 shows T0 plotted against 𝜈 and the prediction of the Lake–Thomas
model (T0 ∼ 𝜈) as the dashed line. As clearly shown in Figure 12.2, the experi-
mental data obeyed the Lake–Thomas prediction in the region 𝜈 > 4.0 (p > 0.65).
The agreement in this region indicates that the Lake–Thomas model is valid and
that the term LNU does not depend on p. Thus, it is strongly suggested that N
is estimated as the half of that of the Tetra-PEGs and that U is estimated as the
total bond energy of the backbone of monomeric unit of PEG with the degree
of polymerization of N in the region p > 0.65. In addition, the region where the
upward deviation is observed corresponds well with the region where the elastic
modulus does not show linearity with (𝜈 − 𝜇) in Chapter 10. A massive num-
ber of dangling chains may inhibit the mean-field treatment in this region and
make it impossible to correctly estimate 𝜈 and 𝜇. In addition, N can be increased
in this region, because of the decrease in 𝜇 (see Section 3.6.2). In the following
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Figure 12.2 T 0 as a function of 𝜈 in
p-tuned Tetra-PEG gels. Source:
Reproduced with permission from
Akagi et al. [4]. Copyright 2013,
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analyses, we focus on the almost complete reaction system (p ≈ 0.9). Thus, we use
the computed N and U values and focus on the effects of N and 𝜙0 on T0.

12.3 Effects of Network Concentration and Strand
Length

We then evaluated the T0 of Tetra-PEG gels with different N and 𝜙0 values.
Figure 12.3 shows the linear relationships between T0 and 𝜈; the T0 values of sam-
ples with identical N values are on the same line proportional to 𝜈, obeying the
prediction of Lake–Thomas model. Because the difference in 𝜈 for Tetra-PEG gels
with each N originated purely from 𝜙0, these data indicate that the slope (LNU)
is independent of 𝜙0 but dependent of N . Based on the slopes, we estimated the
values of L using the calculated values of N and U .

Figure 12.4 shows L of Tetra-PEG gels plotted against N . L increased from 13 to
34 nm with an increase in N . In the original Lake–Thomas model, L corresponds
to R0 (≈aN1/2) (dotted line). The values of L and R0 have similar magnitudes and
N-dependence but are still different. According to Eq. (12.1), we estimated k for
each N and plotted it against N (Figure 12.5). The values of k were almost constant
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Figure 12.3 T 0 as a function of 𝜈 in
conventional Tetra-PEG gels (open
circles, 5k; open squares, 10k; open
triangles, 20k; open lower triangles,
40k-Tetra-PEG gel) and
hetero-Tetra-PEG gels (filled circles,
5k–10k; filled squares, 5k–20k; filled
triangles, 10k–20k). Linear fits to the
data are shown as the dotted lines.
Source: Reproduced with permission
from Sakai et al. [5]. Copyright 2014,
Royal Society of Chemistry.
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Figure 12.4 L as a function of N in
Tetra-PEG gels (open circles) and
hetero-Tetra-PEG gels (filled
circles). The dotted line represents
the guide of the calculated R0.
Source: Reproduced with
permission from Sakai et al. [5].
Copyright 2014, Royal Society of
Chemistry.
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and approximately 3 in the range examined. These data indicate that network
strands within 3R0 from the crack tip are fully extended at the fracture and that
the length is determined by only N , regardless of p and 𝜙0.

12.4 Bimodal Tetra-PEG Gels

In the fracture process, a breakage of the weakest link allows crack propaga-
tion. Because a shorter chain is weaker than a longer chain according to the
Lake–Thomas model, it is expected that abnormal behavior can be observed in
Tetra-PEG gels with a bimodal distribution in network strand lengths. We per-
formed tearing experiments on bimodal Tetra-PEG gels and estimated L based
on the Lake–Thomas model. Figure 12.6 shows the Nave-dependence of L and
R0 calculated from Nave (dotted line). Here, we assume that Nave represent the
number-average degree of polymerization of the prepolymers. The L and R0 val-
ues have similar Nave-dependence but are different from each other. We also esti-
mated k and plotted it against Nave in Figure 12.7. Although these k values were
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slightly smaller than those for conventional and hetero Tetra-PEG gels, the values
were still similar to each other. These data indicate that a heterogeneous distri-
bution in network strand length does not significantly influence T0 in the range
considered in this study.

12.5 Summary

The fracture energies of Tetra-PEG gels with tuned structural parameters are
fully explained by the Lake–Thomas model with k ≈ 3. The k value is universal
in the range considered in this study; not only changes in 𝜙0 and N but also the
connective heterogeneity and heterogeneous distribution in strand length did
not affect the value of k. These data suggest that the enhancement factor k esti-
mated in this study can be applicable to conventional polymer gels with similar
concentration ranges regardless of the degree of heterogeneity, although there is a
possibility that macroscopic heterogeneity (∼μm), which was not observed in the
Tetra-PEG gel system, affects the fracture toughness. The constant k near unity
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suggests that it is difficult for conventional polymer gels to achieve enhanced
fracture toughness. In other words, the network homogeneity does not strongly
contribute to the enhancement in fracture toughness. Chain entanglements
may play an important role in enhancing k, which is proposed by Gong and
coworkers as a double-network gel or the concept of a “sacrificial bond” [8, 9].
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13
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13.1 Diffusion of Water Molecules

Hydrogels are open systems that substances can diffuse into and out of. This
unique property has attracted significant interest from academic and industrial
viewpoints. As discussed in Section 6.3, there are three major theories describing
the diffusion behavior of small particles in a polymer network: obstruction,
hydrodynamic, and free-volume theories (Eqs. (6.16), (6.21), and (6.25)).
Although there have been many attempts to examine these three theories, their
applicability is still unclear due to ambiguity stemming from the heterogeneity
of conventional hydrogels. To fundamentally understand the diffusion behavior
of small particles in a polymer network, we investigated the diffusion coefficient
of water molecules in Tetra-PEG gels (D) and tested the validity of the three
major theories [1].

13.1.1 Estimation of Diffusion Coefficient of Water Molecules

We conducted a pulsed gradient spin echo (PGSE)-NMR experiment, which
detects the NMR signal from the proton of diffusing particles, to estimate D. The
NMR signal from the particles is related to D by the Stejskal–Tanner equation
as [2]

ln S
S0

= −G2
𝛾

2
𝛿

2
(
𝛥 − 𝛿

3

)
D (13.1)

where S is the NMR echo signal intensity with the field gradient pulses, S0 is the
NMR echo signal intensity without the field gradient pulses, G is the strength of
the magnetic field gradient, 𝛾 is the magnetogyric ratio of the probe molecule, 𝛿
is the gradient pulse length, 𝛥 is the gradient pulse interval, and D is the diffusion
coefficient of a particle. By plotting ln(S/S0) against G2

𝛾
2
𝛿

2(𝛥 − 𝛿/3), we can
assess D as the slope of the line. Tetra-PEG gels mainly contain two types of
protons: protons in water molecules and those in poly(ethylene glycol) (PEG).
In this type of system, D values are described by the sum of two terms with
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different D [3].

ln = ln S
S0

= fA exp
(
−G2

𝛾
2
𝛿

2
(
𝛥 − 𝛿

3

)
DA

)
+
(
1 − fA

)
exp

(
−G2

𝛾
2
𝛿

2
(
𝛥− 𝛿

3

)
DB

)
(13.2)

where f A is the fraction of the NMR echo signal from particle A, DA is the
diffusion coefficient of particle A, and DB is the diffusion coefficient of particle
B. When DA is much larger than DB, DA, and DB are represented as slopes of the
lines in the smaller and larger G2

𝛾
2
𝛿

2(𝛥 − 𝛿/3) regions, respectively.
To estimate D in Tetra-PEG gels, we decomposed D and the diffusion coef-

ficient of PEG (DPEG). In Figure 13.1, ln(S/S0) of the Tetra-PEG gel and the
Tetra-PEG sol are plotted against G2

𝛾
2
𝛿

2(𝛥− 𝛿/3). In the gel state, only one slope
was observed in most cases. This signal was assigned to that of water because the
diffusion coefficient was close to that of pure water. All the lines passed through
the origin, suggesting the applicability of Eq. (13.1) to the estimation of D. It was
often difficult to observe any line in the large G2

𝛾
2
𝛿

2(𝛥 − 𝛿/3) region, suggesting
that the diffusion of PEG was too small to be detected under our experimental
conditions. On the other hand, we observed two slopes in the sol state; the
diffusion of both water and PEG molecules was detected. Based on Eq. (13.2),
the slopes in the small and large G2

𝛾
2
𝛿

2(𝛥 − 𝛿/3) regions were assigned to D
(≈109 m2/s) and DPEG (≈1011 m2/s), respectively [4]. Because D was much larger
than DPEG and the slopes in the region G2

𝛾
2
𝛿

2(𝛥 − 𝛿/3)< 1.0× 109 s/m2 were
constant for all samples, the influence of DPEG on the estimation of D was almost
negligible in this region. Therefore, we estimated D from the slope in the region
G2
𝛾

2
𝛿

2(𝛥 − 𝛿/3)< 1.0× 109 s/m2.

13.1.2 Effect of Structural Parameters

We measured D by tuning three network structure parameters: the molecular
weight of the prepolymers (Mw), the initial and equilibrium swollen polymer vol-
ume fractions (𝜙0 and 𝜙e), and the imbalanced stoichiometries (r). r is related to
the connectivity, p, as p ≈ 2r [5]. In this study, we tuned r = 0, 0.25, 0.375, 0.45,
and 0.5, roughly corresponding to p = 0, 0.5, 0.75, 0.9, and 1.0, respectively. Only
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Figure 13.2 (a) The relationship between D and 𝜙 of Tetra-PEG gels with different Mw values
(Mw: 10 kg/mol, circles; 20 kg/mol, triangles) in the as-prepared (open symbols) and
equilibrium swollen states (full symbols). (b) The relationship between D and r of Tetra-PEG
gels (Mw = 10 kg/mol and 𝜙0 = 0.050, squares; Mw = 20 kg/mol and 𝜙0 = 0.034, rhombuses).
Source: Reproduced with permission from Fujiyabu et al. [1]. Copyright 2019, American
Chemical Society.

the sample with r = 0 was in the sol state, while all the other samples were in the
gel state. In Figure 13.2a, we plotted D against the polymer volume fraction (𝜙). In
both the as-prepared and the equilibrium swollen Tetra-PEG gels, D decreased
with an increase in 𝜙, roughly obeying an exponential function. On the other
hand, the effect of Mw on D was small. These results suggest that 𝜙 is the essen-
tial factor in controlling the diffusion behavior of water molecules in hydrogels;
the presence of the polymer retards the diffusion of water molecules.

Figure 13.2b shows the relationship between D and r. D decreased with an
increase in the deviation from stoichiometry (with a decrease in p), and no drastic
change was observed at the gelation threshold. This results suggest that p is the
second factor governing the diffusion of water molecules in hydrogels. Notably,
this result is counterintuitive because the formation of a network leads to an
increase in the mobility of water molecules. In other words, the pore size, char-
acterized by p (see Section 5.6), is not an essential factor governing the diffusion
of water molecules.

13.1.3 Applicability of Theoretical Models

We examined the applicability of three major theories: obstruction theory, hydro-
dynamic theory, and free-volume theory (see Section 6.3). For the examination
of hydrodynamic theory, Eq. (6.21) is often transformed based on the combina-
tion of the scalings for the screening constant (𝜅) and the correlation length of a
polymer network (𝜉) with respect to 𝜙 [6].

D
D0

≈ exp
(
−R
𝜉

)
≈ exp(−R𝜙0.75) (13.3)

In Figure 13.3, the normalized diffusion coefficient of water molecules (D/D0)
is plotted against 𝜙, where D0 is the diffusion coefficient of pure water in the
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absence of polymers. The lines in Figure 13.3 show the fits by Eqs. (6.16), (13.3),
and (6.25). All three models reproduced the 𝜙- and Mw-dependences of D/D0,
and the difference among the models was negligible in this region. In the small 𝜙
region, the difference between Eqs. (6.16) and (6.25) is negligible because (1−𝜙)
is close to 1 and the effect of the difference in the exponents of 𝜙 in Eqs. (6.16) (1)
and (13.3) (0.75) is also small. Therefore, it is impossible to test the applicability
of the three major theories based on these experimental results.

On the other hand, the r-dependence of D/D0 was not reproduced by any mod-
els (Figure 13.3). The reason for this deviation is clear: Eqs. (6.16), (13.3), and
(6.25) only have 𝜙 as a variable and do not consider the effect of p. This deviation
indicates that a model should include the effect of p. Notably, deviation from the
three representative models was mainly observed in the low p region (p< 0.5).
This deviation has not been observed in previous studies, most likely because the
connectivity of the polymer network has not been changed intentionally.

13.1.4 Effect of Correlation Length on Diffusion

To explain the observed deviation in the r-dependence, we examined some
representative plots and found a linear relationship between D/D0 and 1/𝜉
(Figure 13.4). Here, 𝜉 is the correlation length of a polymer network estimated
from our previous small-angle neutron scattering (SANS) measurements
(Chapter 9 and Column 2). All the data, including the r-dependence, fall onto
the master relationship in this plot. The formula of the master relationship is the
following:

D
D0

= 0.98 exp
(
−2.9
𝜉

)
(13.4)

This formula is almost the same as the original equation of hydrodynamic theory
(Eq. (13.3)). In addition, the front factor is almost unity, and 2.9 Å is close to the
diameter of a water molecule (2.74–3.30 Å) [7]. Based on this correspondence,
we propose a semiempirical equation:

D
D0

= exp
(
−d
𝜉

)
(13.5)
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Figure 13.4 The relationship between
D/D0 and 1/𝜉 of Tetra-PEG gels with
different Mw values (Mw: 10 kg/mol,
circles; 20 kg/mol, triangles) in the
as-prepared (open symbols) and
equilibrium swollen states (full
symbols) and of r-tuned Tetra-PEG gels
(Mw = 10 kg/mol and 𝜙0 = 0.050,
squares; Mw = 20 kg/mol and
𝜙0 = 0.034, rhombuses). Source:
Reproduced with permission from
Fujiyabu et al. [1]. Copyright 2019,
American Chemical Society.
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where d is the diameter of a particle. The importance of the term d/𝜉, which is
the ratio between the characteristic sizes of a particle and a polymer network,
has been suggested by Tokita et al. as well [8]. Therefore, the diffusion behavior
of small particles in hydrogels is considered to be determined by the ratio of the
characteristic size of the particle to that of the polymer network based on the
hydrodynamic theory.

13.2 Migration of Water Molecules in Hydrogels

In Section 13.1, we discussed the diffusion, which is the thermal fluctuation
around the original position characterized by D. In this section, we discuss the
directional motion driven by outer stimuli, i.e. migration. Here, we discuss the
migration behavior of water molecules in hydrogels. Theoretically, the friction
coefficient between the polymer network and water (f ) governs the water
migration in hydrogels. de Gennes predicted f based on the picture that water
flows through the pores of concentration blobs [9, 10].

f ≈ 𝜂

𝜉2 ∼ 𝜉
−2 (13.6)

where 𝜂 is the solvent viscosity and 𝜉 is the blob size. To understand the migra-
tion behavior of water molecules in hydrogels, we performed water permeation
measurements on Tetra-PEG gels with different prepolymer molecular weights
(Mw), polymer volume fractions (𝜙0), and imbalanced stoichiometries (r) [11].

13.2.1 Water Permeation Through Hydrogel

The value of f is estimated by water permeation experiments; a hydrostatic pres-
sure (P) is imposed from the top of a hydrogel membrane with a thickness of d,
and the velocity of water permeating through the membrane (v) is measured.

f = P
vd

(13.7)

Notably, f differs from the dimensionless friction coefficient, although f is
conventionally defined as the “friction coefficient” with units of (N s)/m4 in the
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(a) (b)

Figure 13.5 The gels were prepared in a glass tube
rounded in the center. (a) As-prepared state and (b)
equilibrium swollen state. Source: Reproduced with
permission from Fujiyabu et al. [11]. Copyright 2017,
American Chemical Society.

physics of polymer gels. In a water permeation experiment, a hydrogel always
contacts water and is allowed to swell. Thus, a hydrogel in the as-prepared state
swells during the experiments, preventing an accurate measurement of v. To
solve this problem, we established a novel water permeation apparatus, which
inhibited the swelling of the gel and enabled the water permeation experiment
in a pseudo-as-prepared state (Figure 13.5).

First, we confirmed the inhibition of swelling in the apparatus. A glass tube
containing a gel in its round part (Figure 13.5) was immersed in a water bath,
and the gel was allowed to swell. After confirming that the gel reached its max-
imum change in weight, we measured the swelling ratio in the apparatus (Q,
Figure 13.6). Most of the values of Q were lower than 1.05. Notably, the swelling
ratio of these hydrogels without confinement was up to 3.1 [12]. Thus, this appara-
tus could prevent a gel from swelling and achieve a water permeation experiment
in a pseudo-as-prepared condition.

Then, we checked the invariance of P and the absence of water leakage or gel
deformation during the water permeation experiment. The amount of water loss
caused by the permeation and evaporation was negligible, reflecting that P was
almost constant during the experiments (Figure 13.7a). Figure 13.7b shows a
typical result for meniscus movement. The meniscus position moved fast at the
beginning of the experiment and then reached a steady velocity.
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Figure 13.6 The 𝜙0-dependence of Q
of Tetra-PEG gels with different Mw
values (Mw: 5 kg/mol, squares;
10 kg/mol, circles; 20 kg/mol, triangles)
in the round part of glass tubes.
Source: Reproduced with permission
from Fujiyabu et al. [11]. Copyright
2017, American Chemical Society.
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Figure 13.8 The P/d-dependence of v
of a Tetra-PEG gel (Mw: 10 kg/mol, 𝜙0:
0.034). The dotted line shows the linear
relationship between v and P/d in the
small P/d region. Source: Reproduced
with permission from Fujiyabu et al.
[11]. Copyright 2017, American
Chemical Society.
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We plotted v as a function of P/d (Figure 13.8). The relationship between v
and P/d was linear and agreed with Eq. (13.7) in the small P/d region. In con-
trast, slight upward deviations from the linear relationship were observed in the
region above P/d ≈ 3.0× 106 Pa/m. To minimize the nonlinear effect and the
experimental error caused by the long experimental period, the water permeation
experiments were conducted at approximately P/d = 2.5× 106 Pa/m.

13.2.2 Effect of Structural Parameters on Friction Coefficient

The friction coefficients (f ) of 5k, 10k, and 20k Tetra-PEG gels are shown as a
function of 𝜙0 in Figure 13.9. f increased with an increase in 𝜙0, suggesting that
a denser polymer network more strongly retarded water permeation. When we
focused on Tetra-PEG gels with the same 𝜙0 but different Mw values, Tetra-PEG
gels with “higher” molecular weights between crosslinks retarded the water per-
meation more. Similar counterintuitive results were observed in Tetra-PEG gels
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formed with a nonstoichiometric prepolymer ratio. f increased with an increase
in the deviation from stoichiometry; loosely crosslinked polymer networks
strongly retarded water permeation. When we focused on the power law rela-
tionships between f and𝜙0 (f ∼𝜙0

x), the 5k, 10k, and 20k Tetra-PEG gels showed
x = 2.4, 2.5, and 2.1, respectively. These scaling relationships were completely
different from the theoretical prediction (f ∼𝜙1.5, Eqs. (2.15) and (13.6)).

13.2.3 Effect of Correlation Length on Friction Coefficient

To directly examine Eq. (13.6), we plotted f against the 𝜉 estimated by SANS
(Chapter 9) in Figure 13.10. Here, we assume that the correlation length of a
polymer network estimated by SANS as the blob size (𝜉). All the data fall onto
a curve showing the scaling f ∼ 𝜉−2 (shown as a dotted line). This correspon-
dence strongly suggests the validity of Eq. (13.6). In other words, water molecules
permeate through a hydrogel by passing through a path with the size 𝜉. A slight
deviation was observed in 5k Tetra-PEG gels, which may be due to local hetero-
geneity [13, 14].

Because the units of f and 𝜂/𝜉2 are the same, Eq. (13.6) becomes an identity
formula with a dimensionless constant, a.

f = a 𝜂
𝜉2 (13.8)
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Figure 13.10 The 𝜉-dependence of f of
Tetra-PEG gels with different Mw values
and an r-tuned Tetra-PEG gel (Mw:
5 kg/mol, squares; 10 kg/mol, circles;
20 kg/mol, triangles; r-tuned, crosses).
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We plotted the value of 𝜂/𝜉2 using the viscosity of water (𝜂) at 25 ∘C
(8.9× 10−4 (N s)/m2) as a dashed line in Figure 13.10. The calculated 𝜂/𝜉2

was close to f , indicating that a was on the order of unity (a = 0.68). Because 𝜉 is
strongly correlated with the osmotic pressure (see Section 2.3.5), the permeation
of water molecules through hydrogels is, in other words, governed by the
osmotic pressure, which indicates the water-retention ability of hydrogels.

13.3 Electro-Osmotic Flow in Electrically Charged Gels

Electro-osmosis is the bulk fluid flow that is stimulated when an electric field is
applied to an electrolyte solution in a charged capillary. Counterions accumu-
lating on a charged surface produce a net charge, producing a bulk flow called
“electro-osmotic flow (EOF)” upon application of an electric field. A similar phe-
nomenon occurs in polyelectrolyte gels; counterions accumulating in the poly-
electrolyte network generate EOF.

In the case of the capillary electrophoresis of DNA molecules in agarose gels
at an appropriate pH, EOF moves from the positive electrode toward the nega-
tive electrode because positive counterions in the vicinity of agarose chains move
toward the negative electrode. The EOF decreases the observed electrophoretic
mobility (𝜇obs) of the oppositely migrating negatively charged DNA, resulting in
an electrophoretic mobility (𝜇) of

𝜇 = 𝜇obs − 𝜇EOF (13.9)

where 𝜇EOF is the mobility of EOF. Although Eq. (13.9) is known, systematic and
qualitative investigation on polymer gels has never been performed. We inves-
tigated the EOF in various r-tuned and p-tuned Tetra-PEG gels and discussed
the effects of fixed charges and polymer concentration. r-Tuned Tetra-PEG gels
are formed from nonstoichiometric mixing of two Tetra-PEGs, resulting in the
introduction of fixed charges (amine or carboxylic groups) into the polymer net-
work. In addition, p-tuned Tetra-PEG gels were utilized as electrically neutral
polymer networks that have equal amounts of positive and negative charges. In
addition, to examine the validity of Eq. (13.9), the effect of EOF on the observed
electrophoretic mobility of DNA was discussed.

13.3.1 Electro-Osmosis in an Electrically Balanced System

Our first question is how coexisting opposite charges influence electro-osmosis.
The unreacted end groups (–NH2 and –COOH) in p-tuned Tetra-PEG gels
are positively (−NH3

+) or negatively charged (–COO−) in the buffers used in
this study. Thus, the same amounts of positive and negative charges coexist
in p-tuned Tetra-PEG gels. EOF was evaluated by measuring the electric
field-mediated mobility of the uncharged low-molecular-weight fluorescent
marker BODIPY FL hydrazide. Because of its low molecular weight, BODIPY
FL hydrazide is expected to move at the same rate as EOF. After the injection of
p-tuned Tetra-PEG gels into a custom-made capillary electrophoresis machine,
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Figure 13.11 (a) Photomultiplier tube (PMT) intensity as a function of time in a p-tuned
Tetra-PEG gel (p = 0.6) and (b) 𝜇EOF as a function of p. Source: Reproduced with permission
from Khairulina et al. [17]. Copyright 2017, Royal Society of Chemistry.

the p-tuned Tetra-PEG gels were subjected to a constant electric field strength
of 50 V/cm. The migration time of the neutral marker was measured 2.5 cm from
the injection site. The electro-osmotic mobility values (𝜇EOF) were calculated as
follows:

𝜇EOF = 𝜇 = v
E

(13.10)

where v is the migration velocity and E is the electric field strength. As a result,
we could not detect any fluorescence for 24 hours, indicating that 𝜇EOF ≈ 0
(Figure 13.11a). An increase in the amount of charged species did not change
the results (Figure 13.11b). Notably, at this timescale, we could even detect the
migration of DNA with 1000 bp, which has an extremely slow migration rate.
These results strongly suggest that this absence of EOF is due to the electrically
balanced nature of p-tuned Tetra-PEG gels and that net charge density is
essential for electro-osmosis.

13.3.2 Electro-Osmosis in an Electrically Imbalanced System

Our second question is whether the same amount of opposite charges exactly
induces the same magnitude of EOF in opposite directions. To fabricate polymer
gels incorporating positive or negative charges, r-tuned Tetra-PEG gel system
was utilized. We mixed buffered aqueous solutions of each prepolymer while tun-
ing r at a fixed C = 60 g/l. The fixed charge molarity in the polymer network (𝜀)
is given by

𝜀 = (1 − 2r) ⋅ C
Mw

⋅ f (13.11)

where Mw is the molecular weight of the prepolymer (Mw = 20 kg/mol) and f
is the functionality of the prepolymers (f = 4). As a result, in the case r< 0.5,
the polymer gel is positively charged, and in the case r> 0.5, the polymer gel is
negatively charged.

The EOF of r-tuned Tetra-PEG gels was evaluated using the same method as
that used for p-tuned Tetra-PEG gels. In contrast to p-tuned Tetra-PEG gels,
r-tuned Tetra-PEG gels exhibited fluorescence from a neutral marker, indicating
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Figure 13.12 Correlation between
EOF mobility measured in r-tuned and
p-tuned Tetra-PEG gels (C = 60 g/l)
and charge molarity (𝜀). Source:
Reproduced with permission from
Khairulina et al. [17]. Copyright 2017,
Royal Society of Chemistry.
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the generation of EOF. As shown in Figure 13.12, r-tuned gels with opposite
charges generated EOF in opposite directions: from the cathode to the anode
for negatively charged specimens (r> 0.5) and from the anode to the cathode for
positively charged specimens (r< 0.5). The magnitude of EOF increased with an
increase in |𝜀|, and the behaviors of positively and negatively charged specimens
were completely symmetrical. These data strongly suggest that the same amounts
of opposite charges induce the same magnitude of EOF in opposite directions.
Another important point is that the extrapolation of 𝜀 to 0 does not go to𝜇EOF = 0,
although an electrically neutral p-tuned system has 𝜇EOF = 0. The origin of the
offset may be due to nonspecific interactions between the neutral marker and the
capillary wall, as discussed in the following text.

Next, we evaluated the effect of C on EOF. r-Tuned gels with various 𝜀 values
were prepared with C = 40, 50, and 60 g/L. Figure 13.13 shows the 𝜀-dependence
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Figure 13.13 Correlation between EOF mobility (𝜇EOF) measured in r-tuned Tetra-PEG gels
with C = 40, 50, and 60 g/l and charge molarity (𝜀). Circles, triangles, and squares represent
r-tuned Tetra-PEG gels with C = 40, 50, and 60 g/L, respectively. Also, the annotation in
Figure 13.12 disappears; Circles, Triangle, and Squares represent r < 0.5 (𝜀 > 0), r = 0.5 (𝜀 = 0),
and r > 0.5 (𝜀 < 0), respectively. The label of the left axis is 𝜇EOF [cm2/Vs], and that of the
bottom axis is 𝜀 [mmol/L]. Source: Reproduced with permission from Khairulina et al. [17].
Copyright 2017, Royal Society of Chemistry.
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of EOF for each concentration. Two main features can be observed from
Figure 13.13. First, 𝜇EOF decreases with an increase in C, suggesting that the
polymer network acts as an obstruction decelerating the EOF. Second, linear
regression fitting of each data set in Figure 13.13 showed a constant offset
regardless of C. This result indicates that the offset value is not related to any
structural parameters of the polymer network but rather to the nonspecific
interactions between the migrating neutral marker and the capillary wall.
Overall, it is concluded that the charge molarity (𝜀) and polymer concentration
(C) govern the electro-osmosis in weakly charged polyelectrolyte hydrogels.
Notably, an increase in 𝜀 subsequently leads to a decrease in elastic modulus.
Thus, this linear relationship implies that network architecture does not have an
additional effect on the retardation of EOF.

13.3.3 Sum Rule of Electro-Osmotic Flow and Electrophoretic Motion

We then investigated how EOF contributes to the electrophoresis of negatively
charged DNA molecules. To answer this question, the electrophoretic behavior
of DNA markers in the size range of 20–1000 bp in p- and r-tuned Tetra-PEG
gels was investigated. To examine the true effect of 𝜀, gel specimens were set to
have the same C and different values of 𝜀 (−𝜀0, 0, and +𝜀0).

Figure 13.14 shows the electrophoretic mobility values of DNA markers in the
gel specimens. In general, the electrophoretic mobility of DNA decreases with
an increase in the number of DNA base pairs (n) [15, 16]. Here, let us focus on
the effect of charges on electrophoretic mobility. The observed mobility of DNA
increased in networks with positive charges (𝜀= 𝜀0, r< 0.5) and decreased in net-
works with negative charges (𝜀 = −𝜀0, r> 0.5) compared with a neutral network
(𝜀 = 0, r = 0.5). This result is reasonable because the direction of EOF generated
by fixed positive charges is the same as that of the electrophoretic mobility of
DNA, and vice versa.

We then subtracted the influence of EOF from the data in Figure 13.14 based
on Eq. (13.9). Notably, the EOF value applied to each DNA molecule is assumed
to be constant regardless of n. As clearly shown in Figure 13.15, the subtracted
data for the positively and negatively charged network converged with that of the
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Figure 13.14 Double-logarithmic
plot of observed DNA mobility (𝜇obs)
as a function of DNA base pairs (n)
prior to EOF correction. Source:
Reproduced with permission from
Khairulina et al. [17]. Copyright 2017,
Royal Society of Chemistry.
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Figure 13.15 Double-logarithmic
plot of the corrected mobility of DNA
(𝜇) as a function of DNA base pairs (n)
with EOF correction. Source:
Reproduced with permission from
Khairulina et al. [17]. Copyright 2017,
Royal Society of Chemistry.
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electrically neutral polymer network. These data strongly suggest the validity of
Eq. (13.9); the fixed charges in a polymer network influence the electrophoretic
mobility through only the EOF.

13.4 Migration of Small Double-Stranded DNAs

Next, we focused on the migration of double-stranded DNA (dsDNA), which is
applied in gel electrophoresis. During electrophoresis, the interaction between
the polymer network and the charged molecules is the key factor differentiating
the electrophoretic mobility (𝜇) of the charged molecules according to length.
When dsDNA is smaller than the persistence length of dsDNA (≈50 nm), it can be
simply regarded as a stiff rod. In this case, the Ogston model (see Section 6.3.1) is
often used to explain the migration behavior. In contrast, the reptation model (see
Section 6.3.4) and the entropic trapping (ET) model (see Section 6.3.5) are used
to explain the migration behavior of relatively large charged molecules. Although
the validity of these models was experimentally confirmed to some extent, they
are not fully understood.

In this section, we focus on the migration behavior of small dsDNA in neutral
gels. To fundamentally understand the migration behavior of small dsDNA, we
conducted electrophoresis on dsDNA in the range of 20–160 bp in Tetra-PEG
gels with a series of precisely tuned 𝜙 and polymerization degree between
crosslinks (N s) values [15].

13.4.1 Electrophoresis of dsDNA in Tetra-PEG Gels and Solutions

We conducted capillary gel electrophoresis on dsDNA fragments with n from 20
to 160 bp in Tetra-PEG gels and PEG solutions by tuning 𝜙 and N s. The elec-
trophoretic mobility (𝜇) was calculated by the same method as in Section 13.3.1.
The n-dependence of𝜇 is displayed in Figure 13.16. Larger DNA had a lower𝜇. An
increase in 𝜙 or a decrease in N s also lowered 𝜇. These results indicate that large
DNA or a dense network leads to strong interactions and results in a decrease
in 𝜇.
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Figure 13.16 The n-dependence of 𝜇 in Tetra-PEG gels and PEG solutions with different 𝜙 (𝜙:
0.034, open circle; 0.050, square; 0.066, triangle; 0.081, rhombus). The error bars are hidden
when the error bar is smaller than the symbol size. (a) Ns = 113, (b) Ns = 227, (c) Ns = 454, and
(d) PEG solution. Source: Reproduced with permission from Li et al. [15]. Copyright 2013,
American Chemical Society.

Figure 13.17 shows semilogarithmic plots of 𝜇 against 𝜙 for various N s and
n values. We assumed that the polymer volume fraction of the polymer gel
was the same as that of the prepolymer solution because subsequent swelling
or deswelling in the capillary tube with an extremely high aspect ratio hardly
occurred. 𝜇 was an exponential function of 𝜙 for each N s and n, which corre-
sponds well to the Ogston model prediction (Eq. (6.16)). The deviation from
the fitting curve in the low 𝜙 region is probably due to the imperfections of the
network reported previously [12], which decrease the interaction of the network
with dsDNA and increase the 𝜇.

13.4.2 Semiempirical Model

According to the Ogston model, the extrapolation and slope in Figure 13.17 cor-
respond to the free solution electrophoretic mobility (𝜇0) and retardation coeffi-
cient (K r), respectively. The K r values estimated from the fit are plotted against
n in Figure 13.18. The K r values increased with an increase in n, and the increas-
ing rate decreased with an increase in N s. In contrast to the Ogston prediction
(Eq. (6.17)), K r was a simple power law function of n: K r = 6.4n0.34 (N s = 113),
K r = 8.1n0.22 (N s = 227), K r = 10.5n0.11 (N s = 454), and K r = 12.7n0 (PEG solution)
(Figure 13.13). Thus, 𝜇/𝜇0 is semiempirically represented as follows:

𝜇

𝜇0
= exp(−Kr𝜙) (13.12)
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Figure 13.17 The 𝜙-dependence of 𝜇 in Tetra-PEG gels and PEG solutions with dsDNA of size
n (n: 20 bp, circle; 40 bp, square; 60 bp, triangle; 80 bp, rhombus; 100 bp, full circle; 120 bp, full
square; 140 bp, full triangle; 160 bp, full rhombus). The error bars are hidden when they are
smaller than the symbols. (a) Ns = 113, (b) Ns = 227, (c) Ns = 454, and (d) PEG solution. Source:
Reproduced with permission from Li et al. [15]. Copyright 2013, American Chemical Society.

Figure 13.18 The n-dependence of
K r in Tetra-PEG gels and PEG solution
with different Ns values (Ns: 113,
open circle; 227, square; 454,
triangle; PEG solution, rhombus). The
dotted line is the fitting curve
showing the relation Kr = 𝛼(Ns)n𝛽(Ns).
Source: Reproduced with permission
from Li et al. [15]. Copyright 2013,
American Chemical Society.
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Kr = 𝛼(Ns)n𝛽(Ns) (13.13)

where 𝛼(N s) and 𝛽(N s) are variables that depend on only N s.
The N s-dependence of 𝛼(N s) and 𝛽(N s) is shown in Figure 13.19. The data for

the PEG solution are shown as dotted lines. With increasing N s, 𝛼(N s) increased,
and 𝛽(N s) decreased. Both 𝛼(N s) and 𝛽(N s) asymptotically reached constants that
correspond to those of the PEG solution (𝛼 = 12.7 and 𝛽 = 0). These data strongly
suggest that the PEG solution can be practically treated as a polymer network
with an infinite N s and that the migration behavior is not critically influenced by
the gelation threshold.
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Figure 13.20 The 𝜙-dependence of
the reduced electrophoretic mobility
(𝜇/𝜇0) in PEG solution with dsDNA of
size n (n: 20 bp, open circle; 40 bp,
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13.4.3 Effect of Correlation Length on Electrophoretic Mobility

Let us focus on the 𝜇/𝜇0 of the PEG solution, which corresponds to a polymer
gel with an infinite N s. The 0 value of 𝛽 in the PEG solution indicates that 𝜇/𝜇0 is
defined by only 𝜙 and is represented as

𝜇

𝜇0
= exp(−12.7𝜙) (13.14)

Figure 13.20 shows 𝜇/𝜇0 of the PEG solutions. In practice, the values of 𝜇/𝜇0
did not depend on n and were well predicted by Eq. (13.14). These data strongly
suggest that the 𝜇/𝜇0 of polymer gels is defined by only 𝜙, regardless of N s
and n, when N s is large enough. Because K r increases with a decrease in N s
(Figure 13.18), the value expected from Eq. (13.14) is the maximum 𝜇/𝜇0 at a
specific 𝜙, which is not influenced by N s or n.

The 𝜙-dependent and N s-independent characteristics remind us of the molec-
ular picture of a concentration blob (Chapter 9 and Column 2). Polymer solutions
and polymer gels in semidilute solution are closely packed systems of concen-
tration blobs. Because the concentration blob size (𝜉, 0.5–3 nm) [14] is smaller
than the the gyration radius (Rg) of dsDNA (7–54 nm), dsDNA may migrate in
the packed concentration blobs, which cause friction against dsDNA. Because
dsDNA may be treated as a free-draining rod-like structure, the friction against
dsDNA from concentration blobs will be proportional to n. This n-dependence
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Figure 13.21 The Ns-dependence of 𝜇/𝜇0 in Tetra-PEG gels and PEG solution with dsDNA of
size n (n: 20 bp, open circle; 40 bp, square; 80 bp, triangle; 160 bp, rhombus). The dotted line
shows the average value of the PEG solution. (a) 𝜙 = 0.034, (b) 𝜙 = 0.050, (c) 𝜙 = 0.066, and (d)
𝜙 = 0.081. Source: Reproduced with permission from Li et al. [15]. Copyright 2013, American
Chemical Society.

will be cancelled by the effect of electric force, which is also proportional to n,
resulting in loss of the size-sieving effect. This expectation corresponds well to
the experimental finding that n-dependence was not actually observed in the PEG
solution (𝛽 = 0).

13.4.4 Interaction Between Elastic Blobs and Contour of dsDNA

Finally, we show the effects of N s and n on 𝜇/𝜇0. The N s-dependence of 𝜇/𝜇0
is displayed in Figure 13.21. With decreasing N s, 𝜇/𝜇0 decreased from the value
predicted by Eq. (13.14), and the decrease was remarkable in dsDNA with large n
values. These data indicate that the N s and n determine the degree of retardation
from the maximum estimated by Eq. (13.14). Because the elastic blob is charac-
terized by N s, it is expected that the elastic blobs interact with the contour of
dsDNA. The direct influence of N s on the n-dependence of K r seen in Eq. (13.13)
also supports the strong interaction between the elastic blob and the contour of
dsDNA.

13.5 Migration of Large Double-Stranded DNAs

To fully understand the dynamics in a polymer network, the migration of large
molecules is as important as the diffusion and migration of small particles in
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a polymer network discussed in Sections 13.1–13.4. Here, we also conducted
a systematic study of the electrophoretic migration behavior of dsDNA with
large n values (100–8000 bp) in polymer networks with controlled network
structures [16].

13.5.1 Electrophoresis of Large dsDNA in Tetra-PEG Gels
and Solutions

We performed capillary electrophoresis of dsDNA (n: 100–8000 bp) in
Tetra-PEG gels and PEG solutions with different degrees of strand polymeriza-
tion between crosslinks (N s) and polymer volume fraction (𝜙) [16]. Figure 13.22
shows double-logarithmic plots of the n-dependence of 𝜇. With increasing
n, 𝜇 first decreased and then became independent of n; n-dependent and
n-independent migration regions were observed. The boundary between these
two regions was at approximately 1000 bp. The crossover from n-dependent to
n-independent migration behavior qualitatively agrees with the biased reptation
with fluctuations (BRF) model, signifying the former as reptation of unoriented
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Figure 13.22 Double-logarithmic plots
of 𝜇 as a function of n in Tetra-PEG gels
with varied 𝜙 and Ns = (a) 113, (b) 227,
and (c) 454 and (d) in PEG solutions
with varied 𝜙 values. Source:
Reproduced with permission from Li
et al. [16]. Copyright 2014, American
Chemical Society.
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chains and the latter as reptation of oriented chains. In the following, we focus
on and discuss only the n-dependent region, and we refer to the “reptation of
unoriented chains” as “reptation” for simplicity.

All the existing models based on the reptation concept, including the BRF
model, predict the power law relationship between 𝜇 and n for an ideal chain as
𝜇∼ n−𝛾 with 𝛾 = 1. However, as shown in Figure 13.22 (dotted lines), 𝛾 varied
from 0.36 to 1.46 depending on systems. This discrepancy with the reptation
models indicates that the simple reptation concept cannot predict the migration
behavior of dsDNA in polymer networks.

On the other hand, focusing on relatively large dsDNA (n = 20–1000), we can
clearly observe linear relationships between log10 𝜇 and𝜙, similar to the observa-
tion in the small molecular dsDNA (Figure 13.17). This agreement indicates that
Eqs. (13.12) and (13.13) may thus be applicable to larger dsDNA.

13.5.2 Transition of the Migration Mechanism

We estimated 𝜇0 and K from the fit in the same way as in Section 13.4.2.
Figure 13.23 shows the double-logarithmic plot of 𝜇0 as a function of n. In
general, 𝜇0 decreased with increasing n. A clear difference between the PEG
solution and Tetra-PEG gels was observed: 𝜇0 scales as 𝜇0 ∼ n−0.17 in the PEG
solution, while the scaling relationship changed from 𝜇0 ∼ n−0.17 to 𝜇0 ∼ n−0.81

in the Tetra-PEG gels. A crossover was observed at approximately n = 200–300
regardless of N s. These data indicate that although permanent crosslinks are
vital for this crossover, the mesh size, which is defined by N s, does not influence
the crossover. Notably, the crossover is close to the number of base pairs np
(np ≈ 150 bp) that corresponds to the persistence length of dsDNA.

The other parameter obtained from the fit in the same way as in Section 13.4.2
is K . Figure 13.24 displays the double-logarithmic plot of K as a function of n. K
increased with increasing n and decreasing N s. For each N s, two different power
law relationships (K = 𝛼n𝛽) with a crossover at approximately np were observed.
Notably, K in the range n< np increased with decreasing N s, while K in the range
n> np was a universal value (∼0.3) regardless of N s. Through these analyses, we

Figure 13.23 Double-logarithmic
plot of 𝜇0 as a function of n. The
dotted lines illustrate the fitting
curves 𝜇0 ∼ n−0.17 and 𝜇0 ∼ n−0.81.
The solid vertical line indicates the
number of base pairs np
(np ≈ 150 bp) that corresponds to
the persistence length of dsDNA.
Source: Reproduced with
permission from Li et al. [16].
Copyright 2014, American
Chemical Society.
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obtained the following empirical equations for polymer solutions:

𝜇 = A1n−0.17 exp(−12.7n0
𝜙), n < np (13.15a)

𝜇 = A1n−0.17 exp(−2.9n0.3
𝜙), n > np (13.15b)

and the following equations were obtained for gels:

𝜇 = A1n−0.17 exp(−𝛼1n𝛽1𝜙), n < np (13.15c)

𝜇 = A2n−0.81 exp(−𝛼2n0.3
𝜙), n > np (13.15d)

where A1 (=5.4× 10−4) and A2 (=2.0× 10−2) are constants and 𝛼1, 𝛼2, and 𝛽1 are
functions that depend on only N s.

Let us compare these empirical equations with the existing models for
electrophoretic mobility. Considering the equation forms, we can roughly
classify the existing models into two types based on either power law functions
(the Rouse and reptation models; see Sections 6.2.2 and 6.3.4) or exponential
functions (the Ogston and ET models; see Sections 6.3.1 and 6.3.5). Each of
the empirical equations (Eqs. (13.15a)–(13.15d)) is neither a simple power law
nor an exponential function but rather is a product of both. This observation
strongly suggests that the migration of dsDNA in polymer networks involves the
mechanisms of both types of models.

We will first focus on the power law terms in Eqs. (13.15a)–(13.15d). For migra-
tion in the gels, the power law term changed from n−0.17 to n−0.81 with a crossover
at approximately np. The term n−0.81 clearly corresponds to the reptation model
(𝜇∼ n−0.8). In contrast, the term n−0.17 is close to the prediction of the Rouse
model (𝜇∼ n0). This similarity indicates that in gels, stiff chains (n< np) migrate
via a Rouse-like manner, while semiflexible chains (n< np) migrate by reptation.
Because the crossover is at approximately np, the flexibility of the chain is a key
factor in reptation. Contrary to what was observed in the gels, in the polymer
solutions, the power law term was always Rouse-like (n−0.17) without a crossover.
This result clearly indicates that reptation-type migration does not occur in poly-
mer solutions under our experimental conditions. The presence of crosslinks is
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another key factor for reptation; reptation may occur when crosslinks exist and
the polymer chain is flexible enough to form the “reptation tubes.”

Finally, we will focus on the exponential terms. The equations in the Ogston
and ET models are derived by calculating the change in the number of states
due to the geometric confinement of the network; both models are expressed as
𝜇∼ exp(𝛥S/kB), where 𝛥S denotes the entropy loss and kB represents the Boltz-
mann constant. Therefore, the exponential terms of Eqs. (13.15a)–(13.15d) may
express entropy loss. In Eqs. (13.15a)–(13.15d), 𝛥S is proportional to𝜙 regardless
of n and N s; the geometric confinement is proportional to the polymer volume
fraction. However, the n-dependence of 𝛥S changed from 𝛥S ∼ n𝛽1 to 𝛥S ∼ n0.3

with a crossover at approximately np (Figure 13.24). This result indicates that the
origin of the entropy loss changed drastically at approximately np.

For short and stiff dsDNA with n< np, the origin of the entropy loss may be
an interaction of dsDNA with the mesh of the polymer network that is defined
by N s. As illustrated in Figure 13.24, the n-dependence of 𝛥S became weaker
with increasing N s and asymptotically approached the relationship of the PEG
solution, for which 𝛥S ∼ n0. In contrast, regarding the semiflexible dsDNA with
n> np, 𝛥S had a constant scaling relationship with n (𝛥S ∼ n0.3) in both the gels
and polymer solutions, indicating that the entropy loss does not originate from
mesh–dsDNA interactions and might be due to the instantaneous conforma-
tional change of dsDNA that accompanies migration in polymer networks.
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Osmotic Pressure
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14.1 Osmotic Pressure of Gels and Prepolymer
Solutions

Polymer gels have both solid-like and liquid-like nature, as demonstrated by the
equation of state for polymer gels (Eq. (4.55)). The main factor representing their
liquid-like nature is the osmotic pressure (𝛱os) stemming from the enthalpy and
entropy for configuration (Eq. (4.36)). We measured the osmotic pressure of the
prepolymer solution and that of the gel by the deswelling method developed by
Horkay et al. [1]. In this method, gels were equilibrated with aqueous poly(vinyl
pyrrolidone) (PVP) solutions of known osmotic pressure. The swelling pressure
(𝛱 sw =𝛱os −𝛱el) of the gel is estimated as the osmotic pressure of the outer PVP
solution, in which the gel does not swell. Here,𝛱el is elastic pressure. Figure 14.1
shows the osmotic pressure of the prepolymer solutions (open symbols) and gels
(closed symbols) formed at different polymer concentrations (C) [2]. The pre-
polymer solution showed a crossover around c*; the power-law relation changed
from 𝛱os ∼C1.3 to 𝛱os ∼C2.0. These scalings correspond to those for the dilute
and semidilute regions [3] (see Section 2.3.5), respectively. On the other hand,
only a scaling 𝛱os ∼C2.0 was observed in the gel regardless of C, suggesting that
gel has a similarity with a semidilute solution. Notably, the𝛱os of the gel is always
lower than that of the prepolymer solution with the same C; i.e.𝛱os decreases as
the gelation reaction progresses.

14.2 Change in Osmotic Pressure During Gelation

To investigate the decrease in𝛱os during the gelation process, we measured𝛱os
at different reaction conversions, i.e. connectivity (p) during the gelation process
(Figure 14.2) [2]. At all C tested, 𝛱os showed a characteristic change with an
increase in p;𝛱os decreased with an increase in p in the sol region (p< pc), while
it became constant in the gel region (p> pc). Here, pc is the reaction conversion
at the critical gelation point (gelation threshold). Given that the𝛱os of the initial

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
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state obeys the van’t Hoff’s law at C < c*, the decrease in 𝛱os is due to a decrease
in the number of agglomerated polymers during gelation. Interestingly, no
change in 𝛱os was observed at p> pc; the gel has an identical osmotic pressure
for each C obeying 𝛱os ∼C2.0 (closed circles in Figure 14.1). The constant 𝛱os
in the gel region suggests that crosslinking after the gelation threshold does not
influence the concentration fluctuation of the polymer network (or blob size).

Here, it should be noted that𝛱os reached the gel plateau at p1 slightly below pc;
the𝛱c of the gel is determined as the𝛱 of a cluster solution at p1. Here, we define
the polymeric cluster at p1 as the “critical cluster.” To investigate the critical clus-
ter, we apply the Bethe approximation from Flory [4] and Stockmayer [5] and esti-
mate the average number of prepolymers included in a cluster (N). To apply this
treatment, we convert the tetrafunctional gelation system to the equivalent vir-
tual f -functional gelation system. In an f -functional system, N is represented as

N =
1 + p

1 − (f − 1)p
(14.1)

The gelation threshold (p = pc) is defined as the point at which N diverges to
infinity.

pc =
1

(f − 1)
(14.2)

This equation predicted pc = 1/3 for the tetrafunctional network, while the
experimentally estimated pc was higher than 1/3. This discrepancy suggests
that the effective functionality (f eff) in the real system is lower than 4. Thus, we
estimate f eff by substituting the experimentally estimated pc into Eq. (14.2) and
estimate N by substituting f eff and p into Eq. (14.1). The estimated f eff decreased
with a decrease in C, reflecting the deviation from the ideal tetrafunctional
system in the low C region (Figure 14.3).

Given that the osmotic pressure of the prepolymer solution (C < c*) obeys the
van’t Hoff’s law, the decrease in 𝛱 during gelation is most likely caused by the
decrease in the number of clusters; thus, 𝛱 is expected to correlate with N . This
expectation was validated by observing the master relationship between the nor-
malized osmotic pressure (𝛱/𝛱0) and N , 𝛱/𝛱0 ∼N−0.25 [2]. This master rela-
tionship enables us to estimate the number of prepolymers included in the critical
cluster Nc by the interpolation of 𝛱 =𝛱c. The estimated (Nc) scaled with C/c*
as Nc ∼ (C/c*)−2.0, indicating that the critical cluster grew more at lower C values.
Because the osmotic pressure of the critical cluster solution obeys the scaling for
a semidilute solution, the critical cluster is expected to fill the system even when
the initial polymer concentration is lower than c*. Indeed, the following simple
discussion predicts the growth and subsequent space-filling by critical clusters.

14.3 c* Theorem at the Gelation Threshold

Here, we consider an aggregation process in which particles (prepolymers) with a
size (a) agglomerate with each other. Given that N particles agglomerate and form
a cluster with a fractal dimension (Df), the end-to-end distance of the cluster (R) is
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represented by R ≈ aN1∕Df (see Section 1.2). Here, we define the expansion factor
(𝜖) as the ratio of the volume of the cluster consisting of N particles to the sum
of the volumes of the original N particles:

𝜖 = (aN1∕Df )3

a3N
= N (3−Df )∕Df (14.3)

When one defines the volume fraction occupied by the original particles (𝛷0)
and that occupied by the clusters formed by N particles (𝛷1), Eq. (14.3) is
transformed to 𝜀 = 𝛷1/𝛷0. Notably, 𝛷0 is different from conventional polymer
volume fraction, and indicates the occupancy by the envelope of the particles
and clusters.The value of 𝜀 is larger than unity for Df < 3 and increases with
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an increase in N (Figure 14.4) [2]. Based on this equation, two clusters with
volumes of V 1 and V 2 connect and form a cluster with V 3 >V 1 +V 2; the
clusters anomalously grow during the aggregation process. When we accept this
expansion, the cluster can fill the system during the gelation process, even if 𝛷0
is not large enough to fill the system.

By substituting Df = 2.0, which is measured in the small-angle neutron scatter-
ing (SANS) experiment [3], and Nc ∼ (C/c*)−2.0 (estimated in Section 14.2) into
Eq. (14.3), one obtains 𝜀 = Nc

1/2 = (C/c*)−1.0. Given that the intramolecular poly-
mer volume fraction inside the original prepolymer is 𝜙* (see Section 2.2.1), one
obtains 𝛷0 = C/c*. Finally, the following equation is achieved:

𝛷1 ≈ 1 (14.4)

This equation indicates that the critical cluster just fills the system. This behavior
was well reproduced by the molecular dynamics (MD) simulation [6–8].

Based on the results, the gelation process is transformed into a homogeniza-
tion process. In the dilute region, monomer units constituting a prepolymer
are localized inside the sparsely distributed prepolymer, and the local polymer
concentration (c*) is higher than the macroscopic polymer concentration (C).
Each prepolymer behaves as a particle, showing the van’t Hoff’s law of osmotic
pressure [9]. As the reaction proceeds, the agglomeration of the prepolymers
decreases the number of particles, resulting in a decrease in the osmotic
pressure. Subsequently, the volume occupied by clusters (𝛷1) increases. The
clusters further grow, and below the gelation threshold, critical clusters fill the
system (𝛷1 ≈ 1). Notably, further reaction did not change 𝛱 , suggesting the
invariance in monomer distribution as the reaction proceeds; further reaction
only connects the critical clusters and leads to percolation. This result can be
rephrased as “Polymer gels automatically maintain a concentration proportional
to c* at the gelation threshold.” This statement is very similar to the popular c*
theorem proposed by de Gennes [10]. As discussed in Section 4.2.1, the original
c* theorem was proposed for predicting the equilibrium swelling, which was not
correct. However, this statement is correct for the gelation threshold.
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As discussed in Chapter 4, an as-prepared gel conventionally swells in the
solvent that is used to prepare the gel. The pressure driving the swelling is
the osmotic pressure, and the elastic pressure competes against the osmotic
pressure, 𝛱 sw =𝛱mix −𝛱el. As a result, after a certain degree of swelling, these
pressures are balanced, achieving the equilibrium swollen state (𝛱 sw = 0 or
𝛱mix = 𝛱el, Eq. (4.28)). Here, we investigated the change in elastic modulus
during the swelling and the condition for equilibrium swelling. Furthermore, we
investigated the kinetics of swelling and discussed them based on the swelling
equation (Eq. (4.78)).

15.1 Elastic Modulus of Swollen and Highly Deswollen
Gels

As discussed in Section 4.1.2, a gel formed at an initial polymer volume fraction
of 𝜙0 and swollen/deswollen to the polymer volume fraction of 𝜙m has a Young’s
modulus, Em:

Em ∼
kT𝜙m

N

(
𝜆R0

Rref

)2

(4.10′)

where k is the Boltzmann constant, T is the absolute temperature, N is the
polymerization degree between crosslinks, 𝜆 is the uniaxial elongation ratio
due to the volume change (= (𝜙0/𝜙m)1/3), R0 is the end-to-end distance of the
network strand at 𝜙0, and Rref is the end-to-end distance of the network strand at
𝜙m. To examine this model, we prepared Tetra-PEG gels at 𝜙0, partially swelled/
deswelled them to 𝜙m, and measured Em [1]. We focus on the normalized
Young’s modulus (Em/E0), where E0 and Em are the Young’s moduli in the
as-prepared and swollen/deswollen states, respectively. Given that E0 ∼ kT𝜙0/N
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in the as-prepared state (𝜙m = 𝜙0, Rref = R0, and 𝜆 = 1), the following equation is
obtained [1–3]:

Em

E0
=
𝜙m

𝜙0

(
𝜆R0

Rref

)2

=
(
𝜙m

𝜙0

)1∕3( R0

Rref

)2

(15.1)

Assuming that R0 and Rref obey the scaling for the end-to-end distance of con-
ventional polymers in solutions (Eqs. (4.12) and (4.13)), Eq. (15.1) predicts the
following scalings: Em/E0 ∼𝜙m

0.33 below 𝜙* and Em/E0 ∼𝜙m
0.57 above 𝜙*.

On the other hand, highly deswollen gels, which are prepared around 𝜙* and
deswollen to the concentrated region, show a different tendency from Eq. (15.1)
due to their supercoiled structure (see Section 4.1.3). In the highly deswollen
condition, pseudo-entanglements are formed, and the following relationship is
obtained [4]:

Em

E0
=
𝜙m

𝜙0

(
𝜆R0

Rref

)2

=
(
𝜙m

𝜙0

)1∕3
⎛⎜⎜⎜⎜⎝

𝜙0
(2𝜈−1)∕{2{1−3𝜈}}

𝜙m

(2𝜈 − 1)
{2{1 − 3𝜈}}

+ 3
7

1
(2𝜈 − 1)

⎞⎟⎟⎟⎟⎠

2

(15.2)

where 𝜈 is the exclusion volume index. Equation (15.2) is the generalized
form of Eq. (4.27) and it predicts the scaling Em/E0 ∼𝜙m

1.1 above 𝜙** (see
Section 4.1.2).

Figure 15.1 shows the Em/E0 of 20k Tetra-PEG gels (𝜙0 = 0.034 and 0.091) as
a function of 𝜙m [1, 5, 6]. Triangles and circles denote the data of Tetra-PEG
gels swollen in H2O and 1-butyl-3-methylimidazolium tetrafluoroborate, respec-
tively. All the 𝜙0 data are normalized by 𝜙* under each solvent condition. We
fitted ln(Em/E0) vs. ln(𝜙m/Φ0) using two procedures: (i) fit with a power function
for all data and (ii) fit with three power functions with slopes of 0.33, 0.57, and
1.1 for 𝜙m <𝜙*, 𝜙*<𝜙m, and 𝜙**<𝜙m, respectively. Based on Pearson’s correla-
tion coefficients, the fits with the three power functions showed good correlation,
suggesting that there were three regions with slopes of 0.33 (dotted-and-dashed
line), 0.57 (solid line), and 1.1 (dashed line); i.e. crossovers around 𝜙* and 𝜙**
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Figure 15.1 The 𝜙m-dependence of Em/E0
for Tetra-PEG gels prepared around the
overlap concentration. Source:
Reproduced with permission from
Katashima et al. [5]. Copyright 2015, John
Wiley and Sons.
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were observed in Tetra-PEG gels. Notably, not only the data of swelling but also
those of deswelling obey this relationship; crossover was observed at 𝜙* but was
not observed between swelling and deswelling. Thus, we succeeded in examining
the validity of these models from the dilute to the concentrated region.

15.2 Equilibrium Swelling

According to the criterion of Flory, the swelling equilibrium of polymer
gels is achieved by minimization of the total free energy consisting of Fmix
and Fel [7]:

𝜕Fel

𝜕𝜙m
=
𝜕Fmix

𝜕𝜙m
(4.28′)

In addition, in a semidilute good solvent system, Fmix scales with 𝜙 as
Fmix

kBT
∼ 𝜙

3𝜈
3𝜈−1 (2.63′)

Hence, one obtains the following relationship between the polymer fraction (𝜙s)
and the elastic modulus (Es) in the equilibrium swollen state:

Es ∼ 𝜙s
3𝜈

3𝜈−1 (4.32′)

Here, Fmix of polymer gels is assumed to obey the relationship for a semidilute
solution, which has been confirmed in Chapter 14. In this section, we examined
Eq. (4.32′) to validate Eq. (4.28′) and the form of Fmix.

Figure 15.2 shows Es as a function of 𝜙s for 10k and 20k Tetra-PEG gels [1].
The data for the 10k and 20k Tetra-PEG gels fall onto a master curve show-
ing Es ∼𝜙s

2.3. By comparing the scaling exponent with Eq. (4.32′), we obtained
𝜈 = 0.59. This value of 𝜈 was used to successfully reproduce the𝜙m-dependence of

Figure 15.2 The 𝜙s-dependence of
Es. The circles and triangles represent
the 10k Tetra-PEG gel and 20k
Tetra-PEG gel, respectively. Source:
Reproduced with permission from
Sakai et al. [1]. Copyright 2012, Royal
Society of Chemistry.
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Em/E0 in Figure 15.1. In addition, this value is similar to that of a Flory chain (0.59)
and that obtained for PEG by other researchers [8–10]. These results strongly
suggest the validity of Eq. (4.28′) and the form of Fmix. It should be noted that𝜙s

2.3,
which characterizes the equilibrium swelling condition, changes with the initial
condition. This 𝜙0-dependence cannot be predicted by the popular c* theorem
of de Gennes; the gel automatically maintains a concentration c proportional
to c* [11]. The equilibrium swelling is predicted by Flory’s criterion (Eq. (4.28)),
not by the c* theorem.

Here, we discussed the elastic and mixing part of free energy and achieved
the equilibrium swelling by balancing these energies. The elastic part of free
energy is governed by the elastically effective chains, which are characterized
by the architecture, concentration at preparation, and concentration at mea-
surement of the polymer network. On the other hand, the mixing part of free
energy of polymer gel is determined only by the polymer concentration at
measurement, not by any properties of the prepolymer (see Section 2.2.3 and
Chapter 14).

15.3 Swelling Kinetics

15.3.1 Examination of Swelling Equation

As discussed in Section 4.4, the swelling kinetics of a gel are governed by the
swelling equation (Eq. (4.66)) that describes the diffusion of a polymer network
to the outer solution [12]. By applying the initial condition and the boundary
condition to the swelling equation, we obtain an equation that describes the
change in the volume of a gel (Eq. (4.94)) [13]. To examine the validity of
the swelling equation, we conducted a swelling experiment [14]. The swelling
behavior of Tetra-PEG gels with different 𝜙0 values is shown in Figure 15.3.
The experimental results were well reproduced by Eq. (4.94) (dotted lines),
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Figure 15.3 (a) Typical swelling curves of 10k Tetra-PEG gels with different 𝜙0 and (b) typical
time courses of the normalized diameter of a gel (dn) during the swelling experiments for 10k
Tetra-PEG gels with different 𝜙0. Source: Reproduced with permission from Fujiyabu et al. [14].
Copyright 2018, Royal Society of Chemistry.
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suggesting the validity of the swelling equation. This result corresponds to the
results of a vast number of previous studies, thereby qualitatively confirming the
validity of the swelling equation [13].

15.3.2 Cooperative Diffusion Coefficient

The swelling equation suggests that the dynamics of the polymer network are rep-
resented by the cooperative diffusion coefficient (Dc, Eq. (4.79)). The value of Dc
can be estimated by three independent methods: the definition of Dc with K , G,
and f (Dw, Eq. (4.79)), a swelling experiment with Eq. (4.92) (Dsw), and a dynamic
light scattering (DLS) experiment (DDLS) [15]. We estimated these three Dc values
of Tetra-PEG gels with different molecular weights between crosslinks (Mw) and
initial polymer volume fractions (𝜙0) and compared them [14]. In Figure 15.4a,
Dw, Dsw, and DDLS are plotted against the initial polymer volume fraction (𝜙0).
These three diffusion coefficients were divided into two types: Mw-dependent
Dw and 𝜙0-dependent Dsw and DDLS. Theoretically, the cooperative diffusion of a
polymer network is considered as the diffusion of blobs (Eq. (4.95)). Because the
blob size (𝜉) depends on only𝜙0 (see Section 2.2.3), conceptually, Dc also depends
on only𝜙0. Therefore, the𝜙0-dependence and Mw-independence of Dsw and DDLS
roughly agreed with the concept of Dc.

To further discuss the similarity between Dsw and DDLS, we plotted Dsw/DDLS
against 𝜙0 in Figure 15.4b. As shown in Figure 15.4b, Dsw/DDLS was nearly con-
stant (≈0.64) over the whole experimental range, suggesting that Dsw corresponds
to DDLS. In other words, the macroscopic swelling behavior (represented by Dsw)
is governed by the microscopic fluctuation of the polymer network (represented
by DDLS). The difference in absolute values between Dsw and DDLS may stem from
the following three points. The first is the difference in the motions described by
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Dsw/DDLS of Tetra-PEG gels with different Mw values (Mw: 10 kg/mol, circle; 20 kg/mol, triangle).
Source: Reproduced with permission from Fujiyabu et al. [14]. Copyright 2018, Royal Society of
Chemistry.



246 15 Swelling

Dsw and DDLS; Dsw describes translational diffusion, while DDLS describes thermal
fluctuation. The second is the possible inapplicability of Eqs. (4.92) and (4.94) due
to the larger swelling ratio (Q) of Tetra-PEG gels (Q ≈ 1.1–2.1) than those of gels
in previous studies (Q ≈ 1.2) [13]. The third is the decrease in polymer volume
fraction (𝜙) during the swelling. Based on Figure 15.4, one can expect that Dsw
decreases with a decrease in 𝜙 and that the observed Dsw is smaller than the Dsw
of the gel in the as-prepared state.
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16

Degradation
Takamasa Sakai and Takeshi Fujiyabu

Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

Hydrogels inevitably degrade with time under practical conditions and in the
environment. For example, a hydrogel implanted into a living organism suffers
from oxidative stress, leading to degradation [1, 2]. In some bioapplications, such
as scaffolds and carriers for drug delivery, implanted hydrogels should be disin-
tegrated and released from the body after treatment. Therefore, controlling the
degradation behavior of hydrogels is vital. In this chapter, we discuss two topics
related to the degradation of polymer gels. One is the investigation of the degra-
dation behavior of polymer gels caused by the cleavage of a specific unit in the
network strand [3]. This investigation enables fine control and precise predic-
tion of the disintegration time. The other is the investigation of the degradation
behavior of polymer gels caused by nonspecific cleavage of monomeric units in
network strands, which contributes to the understanding of the long-term stabil-
ity of polymer gels [1]. A part of modeling has been discussed in Section 4.5, and
this chapter is also strongly related to Chapters 15 and 17.

16.1 Cleavage of a Specific Site

Conventional Tetra-PEG gels consist of stable C–C, ether, amide, and
maleimide–thiol linkages; thus, they are stable in physiological pH at 37 ∘C for
more than two months and keep their shape more than one year in the eyes
of rabbits [2, 3]. Here, in addition to the conventional two Tetra-PEG units
(Tetra-PEG–OSu and Tetra-PEG–NH2), we designed a cleavable Tetra-PEG
unit containing a cleavable ester linkage upstream of each terminal activated
ester group (Tetra-PEG-deg–OSu, Figure 16.1c) [3]. Tetra-PEG-deg–OSu
reacts with Tetra-PEG–NH2 to form an amide bond in the same manner as
Tetra-PEG–OSu (Figure 16.1b); the only difference is the concurrent installation
of one cleavable site in each network strand (Figure 16.1a). This design enabled
us to control degradability by simply changing the ratio of Tetra-PEG–OSu to
Tetra-PEG-deg–OSu.

We formed Tetra-PEG gels by mixing three kinds of Tetra-PEG units, i.e.
Tetra-PEG–NH2, Tetra-PEG-deg–OSu, and Tetra-PEG–OSu, at a 1 to rdeg to

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 16.1 (a) Design of a degradability-tunable Tetra-PEG gel. The end-group structures of
Tetra-PEG–OSu (b) and Tetra-PEG-deg–OSu (c). Tetra-PEG-deg–OSu introduced a cleavable
carbonyl site (shown as a square) into the network structure. Source: Reproduced with
permission from Li et al. [3]. Copyright 2011, American Chemical Society.
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Figure 16.2 The cycle rank (𝜉) of
Tetra-PEG gels having different
degradable unit fractions (rdeg).
Source: Reproduced with permission
from Li et al. [3]. Copyright 2011,
American Chemical Society.

(1− rdeg) ratio (Figure 16.1) [3]. To investigate the effect of rdeg on network
formation, we measured the elastic moduli (G) of Tetra-PEG gels with different
rdeg values. Here, we apply the phantom network model and estimate the
mole density of cycle rank (𝜉) from G based on Eq. (3.35). Figure 16.2 shows
𝜉 as a function of rdeg. The values of 𝜉 were almost constant, suggesting that
rdeg does not affect network formation. In other words, Tetra-PEG–OSu and
Tetra-PEG-deg–OSu have practically the same reactivity with Tetra-PEG–NH2,
and the obtained hydrogels have similar network architectures except for the
presence of cleavable sites.

We investigated the degradation behavior of the hydrogels in phosphate buffer
(pH 7.4) at 37 ∘C. The time evolution of the swelling ratio (Q), which is the ratio of
the gel volume at time t to that in the as-prepared state, with various rdeg values
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Figure 16.3 The time course of the
swelling ratio (Q) of Tetra-PEG gels
with different rdeg values. Closed circle,
rdeg = 0; closed square, rdeg = 0.63;
closed triangle, rdeg = 0.69; open circle,
rdeg = 0.81; open square, rdeg = 0.88;
and open triangle, rdeg = 1.0. Gels
swelled with degradation, showing
bulk degradation behavior. Source:
Reproduced with permission from Li
et al. [3]. Copyright 2011, American
Chemical Society.
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Figure 16.4 The degradation time
(tdeg) as a function of rdeg.
Degradation was accelerated by
introducing a degradable Tetra-PEG
unit. Source: Reproduced with
permission from Li et al. [3].
Copyright 2011, American Chemical
Society.
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is shown in Figure 16.3. Notably, the size of the gel specimen is small enough
to maintain the following condition: rate of degradation≪ rate of swelling (see
Section 4.4). Under this condition, we can consider the measured swelling ratio as
the equilibrium swelling ratio at t. The gel samples (rdeg ≥ 0.69) swelled with time
and finally disintegrated, showing bulk degradation behavior. The disintegration
time (tdeg) was determined as the point at which no gel could be observed. As
shown in Figure 16.4, tdeg shortened with an increase in rdeg. The swelling ratio of
a Tetra-PEG gel with no ester bond (rdeg = 0) was constant for more than 50 days,
reflecting that neither Tetra-PEG–OSu nor Tetra-PEG–NH2 has readily cleavable
bonds.

The degradation process is quantitatively discussed based on the decrease in
the number density of cycle rank 𝜉 with time t. According to the Flory–Rehner
equation with the phantom model [4], 𝜉 is related to Q by

𝜉 = −
𝜙0

Q
+ ln

(
1 − 𝜙0

Q

)
+ 𝜒

(
𝜙0

Q

)2

V1Q1∕3 (4.98)

The value of 𝜒 was estimated to be 0.45 from the values of 𝜉 and Q for the
Tetra-PEG gel (rdeg = 0). This value corresponded well to the values estimated



252 16 Degradation

400 600

Time (h)

ξ 
(m

ol
/m

3 )

800 1000 12002000
0

1

2

3

4

Figure 16.5 The variation in cycle
rank (𝜉) of Tetra-PEG gels having
different degradable Tetra-PEG
fractions (rdeg). The symbols
correspond to the same samples as
those in Figure 16.3. Source:
Reproduced with permission from Li
et al. [3]. Copyright 2011, American
Chemical Society.

by other authors [5, 6]. Using Eq. (4.98), we can estimate the degradation of 𝜉
(Figure 16.5) from the time course of Q. Importantly, the range of fit with Eq.
(4.98) must be restricted in the high 𝜉 region because the sol fraction dissociated
from the gel decreases the osmotic pressure under the highly degraded condition
(see Section 4.5.1).

We fit the results in Figure 16.5 with Eq. (4.98) and estimated kdeg by the
least-squares method. Equation (4.98) successfully reproduced the results for all
samples (solid lines); the slight upward deviation of the points was attributed to
the dissociation of the sol mentioned earlier. As theoretically expected, the values
of kdeg were almost constant (≈9.76× 10−4 h−1) regardless of rdeg, confirming the
validity of our model. Because the degradation behavior of Tetra-PEG gels is
successfully modeled with the parameter kdeg, we can now reproduce the time
course of the connectivity (p). The time course of p was estimated using Eq.
(4.96) for each rdeg. We then estimated the connectivity at degradation (pc) by
substituting the experimentally observed tdeg values into Eq. (4.96). As shown
in Figure 16.6, all gel samples had identical values of pc (pc = 0.46); i.e. all gel
samples sustained their 3D continuous structure above pc and then immediately
dissociated into soluble clusters below pc. This value is slightly larger than the
gelation threshold estimated in the gelation process (Chapter 8). This slight
discrepancy is due to the limitation of the modeling based on the Flory–Rehner
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Figure 16.6 The fraction of
connected bonds at degradation (pc)
as a function of rdeg. As theoretically
predicted, pc does not depend on
rdeg. Source: Reproduced with
permission from Li et al. [3]. Copyright
2011, American Chemical Society.
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Figure 16.7 Experimental data
(symbols) and prediction of Eq. (16.1)
for disintegration time (tdeg) as a
function of rdeg. The experimental
results are well reproduced by the
model. Source: Reproduced with
permission from Li et al. [3]. Copyright
2011, American Chemical Society.
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equation. In the other detailed measurements, we confirmed the identity of the
gelation and reverse-gelation thresholds.

Although the value of pc is different from the correct value in a strict sense, the
value is useful for this modeling. By substituting p = pc into Eq. (4.96), we can
derive the equation predicting the disintegration time of a degradable Tetra-PEG
gel.

tdeg =
1

kdeg
ln
⎧⎪⎨⎪⎩

rdeg
pc

p0
− (1 − rdeg)

⎫⎪⎬⎪⎭ (16.1)

The prediction of Eq. (16.1) and experimental data for tdeg are shown in
Figure 16.7. Our model succeeded in reproducing the degradation behavior of
a Tetra-PEG gel. Notably, this modeling is based on simple assumptions: the
phantom network model for elasticity, the Flory–Rehner model for equilibrium
swelling, and first-order kinetics for bond cleavage [4, 7]. As discussed in Section
3.4.1, the elastic modulus has a roughly linear relationship with p (the percolation
network model); thus, we can also use a linear assumption for elasticity. Because
the other two assumptions are most likely valid for most systems, this modeling
can also be applied to other degrading polymer gels.

16.2 Cleavage of Nonspecific Sites

Even when a polymer network does not have apparent cleavable bonds, the
polymer gel inevitably degrades on a long-term basis because of “nonspecific
cleavage” (see Section 4.5.2). Nonspecific cleavage of the polymer chain is
caused by common stimuli in practical applications, such as oxidation in vivo,
UV irradiation exposure, and mechanical stress [8–10]. Based on the model
discussed in Section 4.5.2, the degradation process is accelerated with an
increase in the network strand length. Here, we systematically investigated the
degradation behavior of gels with tuned network strand lengths. To investigate
the long-term stability, accelerated tests using H2O2 solution were performed
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at different temperatures. The model well reproduced the experimental data [1],
and the estimated degradation rate constants obeyed transition state theory,
indicating the validity of our modeling [11].

16.2.1 Initial Swelling Equilibrium

The polymer volume fraction of gel specimens in the as-prepared state (𝜙0)
was set around the overlap polymer volume fraction, where the elastic moduli
well obey the phantom network model [7]. The cycle rank density of gels in
the as-prepared state (𝜉0) was estimated according to the phantom network
model. We then measured the equilibrium-swelling ratio of the gel specimens
(Qe) in a 30 w/w% H2O2 aqueous solution at different temperature T = 60,
64, 70, and 80 ∘C (Figure 16.9). The H2O2 solution was used to accelerate the
degradation rate. Here, the swelling ratio of gels is defined as the volume ratio
of gels in the measurement state to that in the as-prepared state. Qe values were
calculated as the average values of the swelling ratio of the gel specimens in
the period t = 15–30 minutes, where the temperature-induced volume change
of the gel specimen was completed and the degradation-induced volume
change was negligible. As expected from the lower critical solution temperature
(LCST) behavior of PEG, Qe decreased with increasing T [12]. According to
the Flory–Rehner equation (Eq. (4.98)) [4], the Flory interaction parameter (𝜒)
was estimated from the parameters 𝜉0, 𝜙0, and 𝜙e, which is the polymer volume
fraction of the gel in the equilibrium-swelling state. As shown in Figure 16.8, 𝜒
increased with increasing T and with decreasing N . The former trend reflects the
decrease in Qe with the increase in T . The latter trend qualitatively corresponds
to the results of our previous study [13] and has been reported in another study
as well [14]. The obtained values of 𝜒 were used as a fixed parameter for each
experimental condition in the following analysis.

16.2.2 Degradation Behavior of Tetra-PEG Gels

Figure 16.9 shows the time course of the swelling ratio of Tetra-PEG gels during
degradation (Q(t)) in H2O2 solution at different T . Q(t) decreased slightly at the
beginning (t < 15 minutes) and then increased over time. Ultimately, all speci-
mens were disintegrated and dissolved into the solution. The initial decrease in
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Q(t) was caused by the volume change induced by the temperature change from
room temperature to the predetermined temperatures (T : 60–80 ∘C), which was
equilibrated within 15 minutes. We ignored these points in the following analyses
because these points were irrelevant to the degradation behavior. The subsequent
increase in Q(t) indicates the progress of bulk degradation over time. We set the
experimental conditions so that the swelling rate is much faster than the degra-
dation rate. Under this condition, we can treat Q(t) as the swelling ratio in the
equilibrium-swelling state at a certain time t and estimate 𝜉(t) from Q(t), 𝜙0, and
𝜒 , according to Eq. (4.98). Figure 16.10 shows the estimated time course of 𝜉(t).
𝜉(t) decreased over time, reflecting the cleavage of the network strands.

16.2.3 A Model for Degradation

The network strands of the polymer network of Tetra-PEG gels consist of three
different kinds of chemical units: carbon–carbon bonds, ether bonds, and amide
bonds. Among these bonds, the ether bonds and amide bonds may be readily
cleaved in H2O2 solution by oxidation and/or hydrolysis. Because the molar
amount of H2O2 was much larger (105 times) than the total molar amount of
ether and amide bonds, we can neglect the consumption of H2O2 accompanying
the degradation of the gels and apply pseudo-first-order kinetics for the cleavage
of the network strands. According to pseudo-first-order kinetics, the possibilities
that an ether (pether) or an amide (pamide) bond still exists after a time period can
be expressed as

pether = exp(−kethert) (16.2)

pamide = exp(−kamidet) (16.3)
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where kether and kamide are the degradation rate constants of an ether and an amide,
respectively. Because each network strand has one amide bonds and N ether
bonds, the probability that a network strand still connects neighboring crosslinks
after a time period (p(t)) is given by

p(t) = p0(pamide(t)(pether(t))N ) = p0 exp[−[kamide + Nkether]t] (16.4)

where p0 is the fraction of connected arms (or reaction conversion) in the
as-prepared state. p is related to 𝜉(t) by the Bethe approximation as Eq. (4.97):

𝜉 (t) = U

(
1
2
+
(

1
p
− 3

4

)1∕2
)(

3
2
−
(

1
p
− 3

4

)1∕2
)3

(4.97’)

where U is the molar concentration of tetra-arm prepolymers in the as-prepared
state. According to Eqs. (16.4) and (4.97′) we finally obtain 𝜉(t) as follows:

𝜉 (t) = U
⎡⎢⎢⎣

1
2
+

[
1

p0 exp
[
−kappt

] − 3
4

]1∕2⎤⎥⎥⎦
⎡⎢⎢⎣

3
2
−

[
1

p0 exp
[
−kappt

] − 3
4

]1∕2⎤⎥⎥⎦
3

(16.5)

kapp = kamide + Nkether (16.6)

where kapp is the apparent degradation rate constant of a network strand.
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Figure 16.11 kapp as a function
of N at different T . Source:
Reproduced with permission
from Li et al. [1]. Copyright 2014,
American Chemical Society.
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16.2.4 Estimation of Degradation Rate Constants

We fit the data in Figure 16.10 with Eq. (16.5) in the range where 𝜉(t) is larger than
half of 𝜉(0). kapp and p0 were set as the fitting parameters. The estimated p0 values
were in the range of ±2% error from the p0 values that were directly measured
by IR spectroscopy [15]. Figure 16.11 shows the estimated kapp plotted against
N . kapp linearly increased with increasing N , which agrees well with Eq. (16.6).
According to the equation, we estimated kamide and kether from the intercepts and
the slopes in Figure 16.11, respectively.

Figure 16.12 shows a semilogarithmic plot of kamide/T and kether/T against 1/T .
A linear relationship was observed for both kamide and kether, indicating that both
follow transition state theory

k ∼ 1
T

exp
(ΔS∗

R

)
exp

(
−ΔH∗

RT

)
(16.7)

where k is the reaction rate constant, ΔS* is the activation entropy, ΔH* is the
activation enthalpy, and R is the gas constant [11]. The estimated ΔH* values of
an amide bond (∼86 kJ/mol) and an ether bond (∼89 kJ/mol) were comparable to
the ΔH* values estimated in previous studies [10, 16], supporting the validity of
our analyses. Thus, we can also predict the time of disintegration caused by the
nonspecific cleavage of strands, which is similar to that caused by the cleavage of
a specific site (Eq. (16.1)).
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Control Over Swelling of Injectable Gel
Takamasa Sakai and Takeshi Fujiyabu

Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

Although a hydrogel can contain more than 90% water by weight, it behaves as
a solid due to the crosslinked polymer network, which is a minor component.
Due to the uniqueness derived from their “solid–liquid coexistence,” hydrogels
are promising for biomedical materials, such as drug delivery systems, scaffolds
of tissue regeneration, and space-filling materials [1–4]. The formation process of
hydrogels brings about another unique attribute: by connecting polymer chains in
a polymer solution, the polymer solution turns into polymer gel, i.e. a liquid–solid
transition occurs. By performing the gelation process in vivo, the pregel solution
can be injected without any surgical procedures and can form a gel on site [5].
This minimally invasive “injectable gel” has an inherent superiority over other
biomaterials.

However, injectable gels have a critical drawback, i.e. swelling. Swelling causes
a drastic decrease in mechanical properties and can damage the surrounding
tissues, especially when used as an infill material for a closed space. The swelling
pressure 𝛱 sw = 𝛱mix −𝛱el originates on the gel surface because 𝛱mix is much
higher than 𝛱el in a good solvent [6]. Although the gel achieves equilibrium
(𝛱 sw = 0) after a certain degree of swelling, as discussed in Section 4.2, this
equilibrium is only transient because 𝛱el decreases with hydrogel degradation
(Section 4.5 and Chapter 16). Thus, additional swelling is expected to occur in
vivo on a long-term basis. Indeed, MIRA gel, which was developed as a buckle for
treating retinal detachments and was clinically used for human patients, caused
severe medical problems due to degradation-induced swelling approximately
seven years after the implantation (Figure 17.1) [5]. This serious problem teaches
us about the difficulties in keeping hydrogels stable on a long-term basis and in
safely disintegrating hydrogels in vivo.

17.1 Nonswellable Gels

We developed a nonswellable gel based on the Tetra-PEG (TP) gel design [7].
This nonswellable gel is designed not to swell in the biological environment
(37 ∘C) by introducing thermoresponsive segments into the network in a similar

Physics of Polymer Gels, First Edition. Edited by Takamasa Sakai.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 17.1 CT image of MIRA gel seven years after implantation. The swollen gel in the eye
socket compressed and deformed the eye ball. Source: Reproduced from https://twinkle.repo
.nii.ac.jp/?action=repository_uri&item_id=22367&file_id=22&file_no=1.

methodology to that used for controlling degradability (see Section 16.1). In
addition to conventional mutually reactive TP units, we synthesized a third unit
consisting of thermoresponsive polymer chains with four amine end groups
(Figure 17.2). The thermoresponsive segments collapse above the lower critical
solution temperature (Tc) and compete against the swelling behavior. The
hydrogels are composed of TPs and thermoresponsive polymer units that align
in an alternating fashion on the nanoscale. The fraction of thermoresponsive
units can be modified by selecting the proper mixing ratio of polymer units
without changing the network morphology. This feature allows the quantitative
introduction of the thermoresponsive polymer unit, leading to precise control
over the degree of swelling above Tc.

The swelling behavior of the hydrogels above Tc is regulated by the fraction of
the thermoresponsive segment (r); for example, when r = 0, the hydrogel is a con-
ventional TP gel without any thermoresponsiveness (Figure 17.2d, rightmost),
whereas a perfect alternating structure is formed when r = 0.5 (Figure 17.2d,
leftmost). Figure 17.3a shows the swelling ratio (Q) at different r values, where
the hydrogels drastically changed their volume around their Tc (at approximately
25 ∘C, irrespective of r). This precise control of Q while maintaining Tc cannot
be achieved with thermoresponsive hydrogels that are fabricated by random
copolymerization of hydrophilic and thermoresponsive monomers. In that case,
the Tc increases significantly with an increase in the amount of the hydrophilic
monomer and finally exceeds 37 ∘C [8]. Notably, the Q of the hydrogel with r = 0
(a conventional TP gel) is greater than 100% over the whole temperature range,
indicating that the hydrogel swells and alters its original shape under physio-
logical conditions. In stark contrast, the Q of the hydrogel with r = 0.4≈ 100%
at approximately 37 ∘C, which indicates that the hydrogel is nonswellable under
physiological conditions (Figure 17.3a). Unlike other conventional hydrogels
with similar compositions, which often induce turbidity [9, 10], this hydrogel
retained its transparency even after shrinking (Figure 17.3b). These data strongly
suggest that hydrogels have an extremely homogeneous network structure and
that the collapsed and swollen phases coexist on the nanoscale.
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Figure 17.2 Schematic illustration of the thermoresponsive tetra-hydrogel system.
(a) Tetra-arm poly(ethylene glycol) with active ester end groups. (b) Tetra-arm poly(ethylene
glycol) with amino end groups. (c) Tetra-arm poly(ethyl glycidyl ether-co-methyl glycidyl ether)
with amino end groups. (d) Polymer network composed of hydrophilic (white) and
thermoresponsive (shadow) polymer units, where r represents the fraction of the
thermoresponsive segment. Source: Reproduced with permission from Kamata et al. [7].
Copyright 2014, AAAS.
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The mechanical properties of the hydrogels are known to be strongly affected by
their degree of swelling. To examine the general effect of swelling, we performed
elongation tests on hydrogels with different r values in their equilibrium-swollen
state. Representative stress–elongation curves of the hydrogels showed that the
maximum elongation ratio (𝜆max) diminished with a decrease in r (Figure 17.4a).
This decrease in 𝜆max is explained by the following: the 𝜆max of polymer gels
is defined as the ratio of two lengths of network strands – the fully stretched
length and length in the initial state (see Sections 1.1 and 11.3). Because swelling
prestretches the network strands in the initial state, 𝜆max inevitably decreases.
Compared with the other hydrogels, the hydrogel with r = 0.4, in which the
swelling is suppressed (hereafter referred to as a “nonswellable” hydrogel),
showed improved mechanical properties. A conventional TP gel (r = 0) in
the equilibrium-swollen state was easily torn off at approximately threefold
stretching, while the nonswellable hydrogel did not rupture even after being
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stretched more than sevenfold of its initial length (Figure 17.4b). The increased
stretchability is mainly due to the unique alternating structure: prestretching of
both the shrunken and swollen phases is inhibited. In addition, the nonswellable
hydrogel showed practically no hysteresis, at least when stretched less than
fourfold of its initial length, which indicates that the elongation did not break
any covalent bonds in the polymer network (Figure 17.4c). Compared with
the hysteresis exhibited by hydrogels during deformation, which essentially
fail to tolerate a continual mechanical load, this completely reversible feature
is prominent. In contrast to such hydrogels, nonswellable hydrogels showed
no swelling or weakening in aqueous media even after repetitive mechanical
overload. Notably, the nonswellable hydrogel endured a compressive stress of up
to 60 MPa even in the equilibrium-swollen state (Figure 17.4d).

17.2 Nonosmotic Gel

Even the nonswellable gel that does not swell under physiological conditions
swells when the network structure is degraded. As mentioned in Chapter 16,
a polymer network degrades under physiological conditions on a long-term
basis, resulting in swelling. Considering the swelling pressure𝛱 sw =𝛱mix −𝛱el,
the maximum 𝛱 sw is determined by only 𝛱mix. To suppress 𝛱 sw even under
degraded conditions (𝛱el ≈ 0), 𝛱os must be suppressed. When 𝛱os is small
enough, the gel cannot swell or harm the surrounding tissues. The 𝛱os of gels is
roughly determined by the polymer concentration and the interaction parameter
between polymer and solvent as

𝛱mix = −
kBT
Vs

(𝜙 + ln(1 − 𝜙) + 𝜒𝜙2) (17.1)

Notably, this equation is obtained by substituting N = ∞ into Eq. (2.49). This
equation offers us two methods to suppress𝛱mix: (i) decreasing𝜙0 and (ii) setting
𝜒 = 0.5 (𝜃 condition). Method (i) has difficulty in forming a gel with a small 𝜙0
(Chapter 8). In addition, there are drawbacks such as poor mechanical properties
and a long gelation time. In Section 17.3, we introduce a gel based on method (i):
instantly formative gel with a super low polymeric component.

Here, we take method (ii), which provides nonswellability regardless of 𝜙0.
To further analyze method (ii), we calculated the analytical solution of the
Flory–Rehner model (Eq. (4.47)) for hydrogels with 𝜙0 = 0.10 [11]. Figure 17.5a
shows the equilibrium swelling ratio (Q = 𝜙0/𝜙e) as a function of the elastic
modulus (E) with different 𝜒 values. Swelling is induced by a decrease in E (i.e.
degradation), and the swelling behavior is suppressed at high 𝜒 . In addition,
Figure 17.5b focuses on the swelling ratio at the degradation point (Q at E = 0)
as a function of 𝜒 . Although this parameter setting is representative, a unique
behavior is predicted: a hydrogel with 𝜒 < 0.5 swells to an infinite degree at
the moment of disintegration, while that with 𝜒 > 0.5 shows a finite degree
of swelling. This analysis also suggests that a gel with 𝜒 ≈ 0.53 can maintain
Q = 1 even during the degradation process. Given that conventional synthetic
biocompatible polymers are hydrophilic (𝜒 < 0.5), conventional hydrogels swell
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Reproduced with permission from Kamata et al. [11]. Copyright 2016, John Wiley and Sons.

during the degradation process. To achieve nonswellable behavior in degrading
hydrogels, building a hydrogel from a polymer with 𝜒 ≈ 0.53 is theoretically
required (Figure 17.5c). The fact that the 𝜒 value needed for realizing the
“nonosmotic” condition is larger than 0.5 is due to the higher-order term that
exists in Eq. (2.48) but is neglected in Eq. (2.49).

Our practical approach to realize such a “nonosmotic” condition is based
on the synthetic control of 𝜒 by synthesizing copolymers from hydrophilic
N ,N-dimethylacrylamide (DMAAm) and hydrophobic N-tert-butylacrylamide
(tBAAm) and subsequently forming hydrogels from the polymer units.
We synthesized two types of four-arm polymers that are mutually reactive
with their counterparts, and mixing aqueous solutions of the prepolymer
units instantaneously produced hydrogels with controlled hydrophobicity
(tetra-poly(DMAAm-co-tBAAm) hydrogels) (Figure 17.6) [11].

The swelling behavior of tetra-poly(DMAAm-co-tBAAm) hydrogels was
tuned by controlling rtBAAm (Figure 17.7a). At a constant temperature of 37 ∘C,
the swelling ratio (Q) was a decreasing function of rtBAAm, demonstrating the
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Figure 17.6 Chemical structures of polymer units and crosslinked polymer networks.
Hydrophilic and hydrophobic monomers are depicted as white and shadow spheres,
respectively. The hydrophobic monomer ratio is expressed as rtBAAm. Source: Reproduced with
permission from Kamata et al. [11]. Copyright 2016, John Wiley and Sons.

nonswelling property (Q≈ 1) at rtBAAm = 0.25 (Figure 17.7b). Notably, pure
poly(DMAAm) gels (hydrogels with rtBAAm = 0) are known to swell (Q≫ 1) over
the whole temperature range due to their hydrophilic nature. We fabricated gels
from the prepolymers with rtBAAm = 0.25 and different 𝜙0 values and confirmed
that all the gels maintained the initial volume even when immersed in a phys-
iological aqueous solution. Therefore, it is experimentally demonstrated that
nonosmotic hydrogels exhibit unconditionally suppressed swelling properties.
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The degradation behavior of nonosmotic hydrogels was completely different
from that of conventional hydrophilic hydrogels. To characterize the effect of
the loss of elastic pressure, i.e. degradation, we intentionally cleaved the network
strands and investigated the consequent swelling behavior. The time course
of Q during the degradation process is shown in Figure 17.8a, left axis. The
hydrogel volume was initially constant. From the middle stage, the boundary
gradually became obscure over time, and the volume slightly increased. The
swelling pressure (𝛱37 ∘C) of the degrading hydrogels (Q≈ 2) was estimated by
the method shown in Chapter 14. The swelling pressure of the gel was always
lower than 1 kPa (Figure 17.8a, right axis). Considering that the elastic modulus
of biological soft tissues is conventional on the order of a few kilopascals [12],
the swelling pressure generated by these nonosmotic hydrogels cannot harm
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Figure 17.8 Degradation behavior of nonosmotic hydrogels. (a) Time course change in Q of a
hydrogel with parameters rtBAAm = 0.25 and 𝜙0 = 0.0965 at 37 ∘C after the addition of
dithiothreitol. (b) Representative photos of degrading hydrogels (outlined with dashed lines)
taken at specified time points. Source: Reproduced with permission from Kamata et al. [11].
Copyright 2016, John Wiley and Sons.
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the surrounding tissue even in confined in vivo spaces. After slight swelling, the
hydrogels disintegrated without further obvious swelling (Figure 17.8b). This
degradation behavior is noticeably different from that of conventional hydrogels,
which significantly swell before reaching their disintegration points (Chapter
16). This behavior quantitatively agrees with the prediction in Figure 17.5c.

17.3 Oligo-Tetra-PEG Gel

According to Eq. (17.1), another methodology for reducing 𝛱mix is to decrease
the polymer concentration. However, the inherent critical problem with this
approach is the challenge of gel formation. Even in the case of TP gels with
amine–OSu chemistry, the lowest gelation polymer concentration is 6.0 g/l,
which requires seven hours for gelation (Figure 17.11a), far exceeding the time
scale of surgery. To prepare an in situ-forming hydrogel with a low polymeric
content within a reasonable time frame, the design and fabrication of polymeric
modules with efficient gelation ability are essential.

During a conventional gelation process (Figure 17.9, top), polymer chains
are connected to each other to form a highly branched polymeric structure

Tetra-PEG gel

Oligo-Tetra-PEG Oligo-Tetra-PEG gel

Sol–Gel transition

Conventional continuous process

1st process

Sol Gel

2nd process

Figure 17.9 Schematic illustration of gelation processes of a conventional TP hydrogel and an
Oligo-TP hydrogel. In the conventional TP hydrogel system, mutually reactive TPs are simply
mixed and reacted with each other to form the hydrogel. In the case of the Oligo-TP hydrogel
system, mutually reactive TPs were first mixed under excess TP–SH and excess TP–MA
conditions to form highly branched polymeric clusters instead of hydrogels (Oligo-TPs). In the
second in vivo process, mutually reactive Oligo-TPs were mixed to form an Oligo-TP hydrogel.
Source: Reproduced with permission from Hayashi et al. [13]. Copyright 2017, Springer Nature.
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Figure 17.10 (a) Two-step fabrication process for Oligo-TP hydrogel. In the first step, TP–SH
and TP–MA were mixed in nonstoichiometric conditions to form SH-excess and MA-excess
Oligo-TPs. In the second process, these Oligo-TP solutions were equally diluted and mixed in
equal amounts to form Oligo-TP hydrogel. (b) Sol–gel phase diagram: the relationship
between the initial polymer concentration (c0) and the mixing ratio of TP–SH to the total
polymer concentration (r = [Tetra-PEG–SH]/([Tetra-PEG–SH]+ [Tetra-PEG–MA])) at the sol–gel
transition points. The conditions inside the dotted line produced gels, while the conditions
outside did not. All the experiments were performed in triplicate and averaged. The lengths of
error bars (SD) are smaller than the size of the symbols. Source: Reproduced with permission
from Hayashi et al. [13]. Copyright 2017, Springer Nature.

(polymeric clusters). The polymeric clusters further grow and eventually form
a macroscopic gel. Here, we separate the gelation at low polymer content into
two processes (Figure 17.9, bottom) [13]. In the first process, the reaction is
intentionally stopped immediately prior to the gelation point, at which stage
polymeric clusters almost completely percolate throughout the system. The
resulting polymeric cluster (Oligo-Tetra-PEG [Oligo-TP]) exhibited a unimodal
size distribution of up to 90 nm, which was much larger than the size distribu-
tions of conventional hyperbranched polymers [14], suggesting that Oligo-TP
had a highly branched structure. In the second process, the Oligo-TPs are
co-crosslinked as individual modules to form a hydrogel (Oligo-TP hydrogels).

To systematically form Oligo-TPs, we utilized mutually reactive TPs
with thiol terminal groups (TP–SH) and maleimide terminal groups
(TP–MA) (Figure 17.10a). First, we investigated the critical ratio for
forming hydrogels (rc) by tuning the molar ratio of these prepolymers
(r = [Tetra-PEG–SH]/([Tetra-PEG–SH]+ [Tetra-PEG–MA])) for each ini-
tial polymer concentration (c0). As shown in Figure 17.10b, the stoichiometric
conditions (rc = 0.5) produced hydrogels in the region c0 > 6.0 g/l, and the r
region that produced hydrogels decreased with a decrease in c0. The Oligo-TPs
are thus formed in the sol region close to the sol–gel transition line. In the case
of c0 = 60 g/l, MA-excess and SH-excess Oligo-TPs were formed at r = 0.13 and
0.87, respectively (rc = 0.16 and 0.83). Based on the UV spectroscopy results,
almost all minor species reacted with the excess species, indicating that only the
excess functional group exists on each Oligo-TP.

In the second process, we co-crosslinked the mutually reactive Oligo-TPs
(MA-excess and SH-excess Oligo-TPs) to form Oligo-TP hydrogels
(Figure 17.10a). Each Oligo-TP solution was diluted to the same specific
concentration (c) and mixed with each other in equal amounts. Figure 17.11a
shows the gelation time (tgel) as a function of c. For direct comparison, the
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Figure 17.11 (a) Gelation time (tgel) of Oligo-TP hydrogels (circles) and TP hydrogels (triangles)
as a function of the polymer concentration (c). (b) Osmotic pressure (𝛱mix) of Oligo-TP
hydrogels as a function of c. (c) SANS measurements of an Oligo-TP solution and an Oligo-TP
hydrogel. (d) Equilibrium storage modulus (G′) of Oligo-TP hydrogels (circles) and TP hydrogels
(triangles) as a function of c. All the experiments except for SANS measurements were
performed in triplicate and averaged. The lengths of error bars (SD) are smaller than the size of
the symbols. The error bars on the SANS profiles show the SD following complete data
processing. Source: Reproduced with permission from Hayashi et al. [13]. Copyright 2017,
Springer Nature.

results from the conventional one-step method, in which hydrogels were directly
prepared using the first process with r = 0.5, i.e. TP hydrogels, are also presented.
Compared with conventional TP gels, Oligo-TP hydrogels had shorter tgel times
that were nearly within the desired range, i.e. less than 10 minutes. In addition
to the shortened tgel, the lowest concentration for gelation and consequent
hydrogel formation decreased to c = 4.0 g/l. Notably, it is difficult to properly
accelerate gelation reactions by tuning the reactivity of the functional groups:
if the reactivity is too great, the level of active species may result in sudden
and heterogeneous gelation because gelation occurs prior to the homogeneous
mixing of the prepolymers. In our methodology, we can continuously and
easily control the “distance” to the gelation point by tuning r in the first process
forming Oligo-TPs, resulting in a suitable approach to gelation. The 𝛱mix of
the Oligo-TP hydrogels was a positive finite value and lower than typical eye
pressure (∼1 kPa) in the region c < 10 g/l (Figure 17.11b). Based on small-angle
neutron scattering (SANS) measurements, the Oligo-TP hydrogel has a similar
structure to the Oligo-TP in the high-q region (0.03 Å−1

< q), as well as a



272 17 Control Over Swelling of Injectable Gel

large structure with a wide and smooth size distribution in the low-q region
(q < 0.03 Å−1) (Figure 17.11c), where q is the magnitude of the scattering vector.
The plateau moduli (G′) of Oligo-TP hydrogels were always higher than those of
the conventional hydrogels with the same c (Figure 17.11d), strongly suggesting
efficient network formation.

We next evaluated the biocompatibility of the Oligo-TP hydrogel (c = 7.0 g/l,
G ≈ 4 Pa) in vivo by subcutaneously injecting it into mice. After four weeks,
Oligo-TP hydrogels remained in the injected site without causing damage to
adjacent tissues (Figure 17.12a). Histological analysis revealed mild infiltration
of inflammatory cells in all tested materials. However, the expression of CD62L,
a marker for inflammatory cells, and encapsulation of the material was detected
only in the hydrogel formed from Oligo-TP crosslinked by small molecules
(Figure 17.12a). Due to the similarity between gelation and reverse gelation
(disintegration), Oligo-TPs are not only the raw materials but also the metabo-
lites of Oligo-TP hydrogels. We thus examined the toxicity of the Oligo-TPs
and confirmed the low toxicities of these specimens in vitro (Figure 17.12b) and
in vivo (Figure 17.12c). The low toxicity of Oligo-TPs may stem from the low
permeability of extremely large Oligo-TPs through the pores of surrounding
tissues. These results strongly suggest the biosafety of Oligo-TP hydrogels
throughout their full lifecycle from formation to disintegration.

The low cytotoxicity and extremely low swelling pressure of Oligo-TP
hydrogels led us to examine the possibility of their application as an artificial
vitreous body. The biocompatibility and effectiveness of Oligo-TP hydrogels
(c = 7.0 g/l, G ≈ 4 Pa) were evaluated using a normal Dutch pigmented rabbit
model. The Oligo-TP pregel solution was compatible with the modality of
current small-gauge incision vitreous surgeries and subsequently formed a
hydrogel within the vitreous cavity. No significant difference in intraocular
pressure was observed between the Oligo-TP hydrogel-injected and balanced
salt solution-injected (control) groups throughout the observation period (up
to 410 days, Figure 17.13a). Based on slit-lamp examinations (Figure 17.13b),
images of eyes after dissection (Figure 17.13c), and H&E staining of histological
sections (Figure 17.13g), neither significant inflammation nor toxic reaction
was observed. The remaining Oligo-TP hydrogel in the vitreous cavity was
detected by slit-lamp biomicroscopy with a 90-D fundus lens; however, it was
not detected with histological analysis, probably because of technical limita-
tions during histological sectioning. Electroretinography for assessing retinal
function showed no significant difference in positive waveforms, implicit times,
and amplitudes between the Oligo-TP hydrogel-injected and control groups
(Figure 17.13d–f). Fundus photography revealed that the Oligo-TP hydrogel
inside the vitreous cavity of the living rabbit eyes remained transparent through-
out the follow-up period. Spectral-domain optical coherence tomography
revealed neither retinal detachment nor edema, and the retinal microstructure
was not morphologically damaged in either group. By contrast, lens opacity
(Figure 17.13b), vitreous opacity (Figure 17.13c), and negative waveforms of
electroretinography (Figure 17.13d) due to severe inflammation were observed
in the high polymer concentration group (c = 60 g/l, G ≈ 9.5 kPa), similar to
previous artificial vitreous materials. The turbidity in the eyes prevented images
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Figure 17.12 (a) Gel specimens and surrounding tissues and representative images of H&E
staining and immunostaining for CD62L (GFP) in histological sections of mice at four weeks
after subcutaneous injection of materials. Asterisks and rectangles denote, respectively, the
hydrogel and the location of the immunostaining images. Nuclei were stained with DAPI.
Nonspecific GFP signal was detected in muscles (dashed lines). Scale bars in the H&E staining
and immunostaining images indicate 5 mm and 100 μm, respectively. (b) Proliferation of
NIH3T3 cells cultured with or without Oligo-TPs. The data (relative cell number) are expressed
as the mean± SDs from four independent experiments. No statistically significant differences
were found between MA-excess Oligo-TP and control, between SH-excess Oligo-TP and
control, and between MA-excess and SH-excess Oligo-TPs via Student’s t-test analysis.
(c) Representative H&E staining images of histological sections in mice subcutaneously
injected with MA-excess and SH-excess Oligo-TPs or PBS. Sections at three days and two weeks
after the injection are shown. Scale bars, 200 μm. CPB, citrate-phosphate buffer; H&E,
haematoxylin and eosin. Source: Reproduced with permission from Hayashi et al. [13].
Copyright 2017, Springer Nature.

of the retina from being obtained through the vitreous. Intraocular pressure
also could not be measured correctly because of postoperative inflammatory
corneal melting in this group. In addition, we developed an animal model of
retinal detachment and injected an Oligo-TP hydrogel into the vitreous cavity
as a vitreous tamponade material to evaluate whether pathological conditions
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Figure 17.13 (a) Changes in the intraocular pressure in the Oligo-TP hydrogel-injected and
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throughout the observation period (up to 410 days) via Student’s t-test analysis. The data are
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The data are expressed as the mean± SD. (f ) Electroretinography data of a-wave and b-wave
amplitudes in the Oligo-TP hydrogel-injected and control groups on day 90 postoperation.
The data are expressed as the mean± SD. No significant difference in implicit times and
amplitudes was observed between the Oligo-TP hydrogel-injected and control groups.
(g) Representative images of H&E staining in histological sections of rabbit eyes at 410 days
postoperation. Scale bars indicate 200 μm. No apparent inflammation or alteration of the
retinal microstructure was observed in either the Oligo-TP hydrogel-injected or control group.
Source: Reproduced with permission from Hayashi et al. [13]. Copyright 2017, Springer Nature.
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Figure 17.14 Fundus photography of rabbit eyes in the Oligo-TP hydrogel-injected, retinal
detachment with the Oligo-TP hydrogel-injected, and control groups.
Arrowhead = intentional retinal break. Source: Reproduced with permission from Hayashi
et al. [13]. Copyright 2017, Springer Nature.

could be treated with the gel (Figure 17.14). As a result, retinal redetachment
was inhibited for 410 days without any complications.
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177, 179–182, 250, 253, 254

photomultiplier tube (PMT) 222
plateau moduli ( G’) 272
poly(ethylene glycol) (PEG) 213, 263
poly(N-isopropylacrylamide)

(PNIPAAm) 49, 91
polymer free-volume theories 213
polymer gels 239

blob size 42–43
deformability 45
dilute polymer solution diffusion

hard sphere 139–140
Rouse model 140–141
Zimm model 141–142

elastic modulus, affine network
model 51–60

gelation criterion
rheological measurement

47–48
scattering 48–49

heterogeneity of 71–73
mesh size of 49–51
network strands and crosslinks

Bethe approximation 63–67
percolate network model 62–63
topological interaction 67–69

phantom network model 54–60
polymer network 45–46
semidilute polymer solutions

entropic trapping model
147–148

free volume model 145–146
hydrodynamic models 144–145
obstruction model 142–143
reptation model 146–147

sol–gel transition

gelation threshold of Bethe
approximation 69–70

gelation threshold of percolation
model 70–71

stress relaxation behavior 47
structure-properties relationship

46
thermal motion and Brownian

motion
diffusion and migration 139
diffusion coefficient and

relaxation time 138–139
three-dimensional network 46

polymeric clusters 72, 237, 269, 270
polymer network 3, 4, 14, 15, 45, 46,

49, 51, 56–59, 64, 69–71, 82,
84, 87, 102, 104–106, 115, 120,
121, 125, 126, 129, 142, 144,
146–149, 153–158, 179, 183,
184, 196, 198, 213, 215–217,
219–222, 224, 225, 227,
229–233, 237, 244–246, 253,
255, 261, 263, 265–267

polymer solution
chain swelling 23–25
ideal chain and real chain 25–26
osmotic pressure

enthalpy change in mixing
35–36

entropy change in mixing
33–34

equation of 36–37
free energy of mixing 32
phase separation of 37–40
scaling of 40–42
semipermeable membrane 32
swelling phenomenon 32

overlapping concentration 26–28
semidilute solution 28–29

polymer volume fractions 23, 26, 37,
40, 79–82, 84, 86, 87, 104, 143,
148, 157, 161, 162, 169, 189,
191–193, 205, 214, 215, 217,
226, 230, 233, 237, 239, 241,
245, 246, 254
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prepolymers 15, 61, 71, 82, 131, 154,
156, 161, 163, 165, 169, 174,
180, 181, 191, 198, 200, 201,
209, 217, 220, 222, 226,
235–237, 239, 244, 256, 266,
267, 270, 271

pseudo-first-order decomposition
104

pseudo-first-order kinetics 103, 255
pseudo-first-order reaction 104
pulsed gradient spin echo

(PGSE)-NMR 213
pure shear (PS) stretching 183

r
reaction rate constant 169, 257
real chains 18–21, 23, 25–31, 81,

86, 125, 126, 141, 144, 147, 148,
165

reptation model 146–148, 231, 232
reptation tubes 233
Rivlin–Saunder method 117, 187
Rouse model 140–141, 144, 146, 232
rubber elasticity theory 192

s
sacrificial bond 211
self-avoiding random walk (SAW) 18
semidilute good solvent system 243
semidilute solution, blob concept 29
semiempirical equation 216
semiempirical model 200–201,

226–228
semistatic process 97
shear strain 110–113
single polymer chain

end-to-end distance
ideal chain 12–15
1D random walk 7–10
3D random walk 10–12

features
chemical bonding 3
coarse-graining 4–5
conformation 3–4
free rotation model 5–6

molecular weight, of polymer gel
3

scaling rule
ideal chain, weight of 16
real chain 18–19
stretching, of ideal chain 17–18

slit-lamp biomicroscopy 272
small-angle neutron scattering

(SANS) 25, 27, 49, 72, 173,
216, 220, 239, 271

small double-stranded DNA (dsDNA)
correlation length on

electrophoretic mobility
228–229

elastic blobs vs. contour 229
semiempirical model 226–228
Tetra-PEG gels and solutions

225–226
sol–gel transition 49

gelation threshold of Bethe
approximation 69–70

gelation threshold of percolation
model 70–71

solid–liquid coexistence 261
Starling approximation 9
static heterogeneity 105
Stejskal–Tanner equation 213
Stokes–Einstein equation 140
Stokes’ law 140, 144
strain energy density function 183

biaxial deformation 183
biaxial stretching measurement

183
coupling b/w different principal

axes 186
cross-coupling

conjecture on origin of 196
elastically effective, ineffective

chains 190–191
guest chains fraction 193–195
network strand length 191–193
polymer volume fraction

191–193
extended gent model 187–189
finite extensibility effect 185–186
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neo-Hookean model 184–185
uniaxial stretching

connectivity effects 197–198
Kuhn model 197
polymer concentration, network

strand length 198–200
semiempirical model 200–201

strain tensor 109–114
stress–elongation curves 45, 46, 53,

126, 127, 131, 132, 190, 191,
197–199, 264

stress ratio 118, 119, 186, 187,
191–193, 195

stress relaxation behaviors 47
supercoiled network strand 85
swelling

equilibrium 85–91, 243–244
elastic modulus, of swollen and

deswollen gels 241–242
and deswelling

cleavage of nonspecific bonds
104

cleavage of specific bonds
102–104

deswollen polymer gels 82–85
electrically charged gels 94
ideal chains 78–79
nonideal chains 79–82
shrinking kinetics 95–102
super water-absorbing polymer

gel 77
kinetics

collective diffusion coefficient
244–246

equation 244
volume phase transition, electrically

neutral gels 91–95
swelling ratio (Q) 103, 218, 246, 250,

251, 254, 255, 262, 265
swelling, polymer network 105–106

t
3D polar coordinate system 99
thermal condition 26
tetra-arm prepolymers 256

Tetra-PEG (TP) gel 183–186, 242
design 261
large dsDNA 230–231

tetra-poly(DMAAm- co-tBAAm)
hydrogels 266

tetrafunctional gelation system 237
tetrafunctional network 237
tetrafunctional polyethylene glycols

(Tetra-PEGs)
bimodal Tetra-PEG gels 157
conventional model networks

156
conversion-tuned (p-tuned)

157–158
conversion values 156
fraction-tuned (r-tuned) 157
scattering curves of 173–176

tetra-functional polymer network
179, 198

thermal fluctuation 14, 105, 147,
217, 245

thermal motion and Brownian motion
diffusion and migration 139
diffusion coefficient and relaxation

time 138–139
thermoresponsive polymer 262
thermoresponsive segments

261–264
three-dimensional Monte Carlo

simulations 165
TPs with maleimide terminal groups

(TP-MA) 270
TPs with thiol terminal groups

(TP-SH) 270
transition state theory 254, 257
translational diffusion 245
two-step fabrication process 270

u
unequi-biaxial (UB) stretching 183,

188
uniaxial deformations 116, 125, 176
uniaxial stretching

connectivity effects 197–198
Kuhn model 197
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uniaxial stretching (contd.)
polymer concentration, network

strand length 198–200
semiempirical model 200–201

v
van’t Hoff equation 37

w
water molecules 246

diffusion
coefficient of 213–214
correlation length on diffusion

216–217
migration 217–221

structural parameters effect
214–215

theoretical models 215–216
hydrogels

correlation length on friction
coefficient 220–221

structural parameters on friction
coefficient 219–220

water permeation through
hydrogel 217–219

Winter–Chambon criterion 48, 161,
166

y
Young’s modulus 53, 128, 241


